Can ocean-sea ice model-simulated variable sea ice thickness and snow depth improve the ice surface temperature simulation in Antarctic numerical weather prediction? Zhaohui Wang (UTAS; <u>Zhaohui.wang@utas.edu.au</u>), Alex Fraser (AAPP, UTAS), Phil Reid (BOM, AAPP), Siobhan O'Farrell (CSIRO),

60° /W

B&A Seas

Sector

130° W

Richard Coleman (AAPP, UTAS)

Introduction

- Overly simplified sea-ice representations are typically used for short-term weather forecasts as the boundary conditions of atmospheric process simulations (Hunke et al. 2020), due to computational resource limitations and the demand for timeliness of forecasts .
- However, with the development of more complicated atmosphere-ocean-sea ice fully coupled models (Smith et al. 2018; Yang et al. 2020) and more abundant computational capacity, coupling ocean-ice models into the existing numerical weather prediction (NWP) models becomes a priority direction for future research.
- Some global NWP systems has coupled ocean-sea ice models in Arctic (Smith et al. 2018), while there no research focuses on polar-optimized NWP models in Antarctic.
- The impacts of forcing Antarctic NWP using ocean-sea ice model simulated sea-

Models and validation data

Weddell Sea Sector

/20° E

Indian Ocean

Sector

Western Pacific

Ocean Sector

90° E

- Polar WRF 4.1.1 was used for NWP forecast for 2018.
- Simulation domain cover the whole Antarctic sea ice region.
- sea-ice thickness (SIT) and snow height (SNOWH) from two
 ocean-sea ice models (ACCESS-OM2-01 and GIOMAS).
- ACCESS-OM2 has 0.1^o model resolution; 0.56 ^o
 atmospheric forcing from JRA55-do ; No data assimilation.
- GIOMAS has 0.8° model resolution; 2.5° atmospheric
 forcing from NCEP-NCAR reanalysis; Assimilated SIC from NSIDC.
- LEGOS/CTOH Ka-Ku band altimetry-derived SIT and SNOWH are used to evaluate the model-derived SIT and SNOWH. NOAA/NSIDC Climate Data Record (CDR) sea ice concentration (SIC) are used to evaluated model-derived SIC.

ice properties are investigated here.

\160° E

Ross Sea

Sector

Results

Experiment design

	SIC	Sea-ice thickness	Snow depth on sea ice
B_SIT1.0	NSIDC prescribe	d 1 m prescribed	5 cm for lower bound, WRF modelled
B_SIT2.0	NSIDC prescribe	d 2 m prescribed	5 cm for lower bound, WRF modelled
B_GISIT_WF	SNH NSIDC prescribe	d GIOMAS prescribed daily	5 cm for lower bound, WRF modelled
B_GISIT_GIS	NH NSIDC prescribe	d GIOMAS prescribed daily	GIOMAS prescribed daily
B_AMSIT_W	FSNH NSIDC prescribe	d ACCESS-OM2 prescribed daily	5 cm for lower bound, WRF modelled
B_AMSIT_AN	VSNH NSIDC prescribe	d ACCESS-OM2 prescribed daily	ACCESS-OM2 prescribed daily

- SIT and SNOWH from ACCESS-OM2 and GIOMAS have been included in Polar WRF as part of the lower boundary conditions.
- Two experiments with prescribed constant SITs (1 m and 2 m) are simulated as a benchmark for other simulations.

Physical explanations

- The IST shows a warm bias over
 most of the sea ice area when SIT
 only is prescribed from either ice ocean model output
 (B_AMSIT_WFSNH and
 - B_GISIT_WFSNH).
- When ACCESS-OM2 SNOWH is also included into Polar WRF
- (B_AMSIT_AMSNH), the IST warm bias is notably reduced, and some regions shift to showing a cold bias (from b to a). The IST bias pattern changes from a mostly warm bias (d) to a mostly cold bias (c), with an especially strong cold bias in the eastern Weddell Sea When **GIOMAS SNOWH** is also included into Polar WRF (B_GIST_GISNH). All four experiments show a strong warm bias in the sea ice regions near the western Weddell Sea and around the Antarctic -10 coast.

Satellite-estimated (upper) and ACCESS-OM2-01 (middle) and GIOMAS (bottom) model-derived SIT.

- Both models underestimate SIT in the Weddell Sea
- ACCESS-OM2 more realistically simulates the polynya and sea ice production near the Ross Ice Shelf due to the finer resolution than GIOMAS.
- ACCESS-OM2 better simulates the distinctive thickness boundary between MYI and FYI in Weddell Sea.

- B_GISIT_GISNH shows a cold bias from July to December.
- Other experiments show warm biases in all months.
- Experiments with variable SIT show similar warm biases as the 1 m SIT experiment.
- B_AMSIT_AMSNH shows a marked warm bias from January to May, while shows

• ACCESS-OM2 underestimates the SIT in the Weddell Sea

Satellite-estimated (upper) and ACCESS-OM2-01 (middle) and GIOMAS (bottom) model-derived SIT.

- Both models show larger difference in SNOWH than SIT compared to satellite.
- GIOMAS considerably overestimates SNOWH in most areas, especially in west Antarctica.
- The simulation of SNOWH by ACCESS-OM2 is much more reasonable.

IST bias from the four variable SIT and/or SNOWH experiments and two experiments using a constant SIT

Month

the best forecast skill in terms of bias of all the experiments after August.

Conclusion

- Putting ACCESS-OM2 and GIOMAS simulated SIT and SNOWH into the Polar WRF model does not produce a strong improvement in forecast skill for surface temperature due to their relatively larger errors in NWP timescale.
- However, good results were achieved when the ACCESS-OM2 SIT and SNOWH were included during the winter months, when the SIT and SNOWH simulations were improved thanks to the complex sea ice dynamics and thermodynamic simulations.
- It is expected that the IST forecast skill can be improved in Polar WRF when including ocean-sea ice model simulated SIT and SNOWH, after assimilation of the satellite-based SIC as well as using a more complex and finer spatial scale simulation of sea-ice processes.
- Future work could consider coupling a complex sea-ice model with satellite and in-situ sea ice data assimilation capability into the Polar WRF model to achieve more accurate results.

SIC simulated by ACCESS-OM2 is much lower than the NSIDC observations in the Weddell Sea in Antarctic summer.

• GIOMAS assimilates satellite-derived SIC while ACCESS-OM2 does not.

Acknowledgements

- Hunke, E., Allard, R., Blain, P., Blockley, E., Feltham, D., Fichefet, T., et al. (2020). Should Sea-Ice Modeling Tools
 Designed for Climate Research Be Used for Short-Term Forecasting? *Current Climate Change Reports*, 6(4), 121–136. https://doi.org/10.1007/s40641-020-00162-y
- Smith, G. C., Bélanger, J.-M., Roy, F., Pellerin, P., Ritchie, H., Onu, K., et al. (2018). Impact of Coupling with an Ice– Ocean Model on Global Medium-Range NWP Forecast Skill. *Monthly Weather Review*, *146*(4), 1157–1180. https://doi.org/10.1175/MWR-D-17-0157.1
- Yang, C., Liu, J., & Xu, S. (2020). Seasonal Arctic Sea Ice Prediction Using a Newly Developed Fully Coupled Regional Model With the Assimilation of Satellite Sea Ice Observations. *Journal of Advances in Modeling Earth Systems*, 12(5), 1–25. https://doi.org/10.1029/2019MS001938