Using CICE6 to map the Antarctic winter marginal ice zone

Noah Day (UoA), Luke Bennetts (UoA), Siobhan O'Farrell (CSIRO)

Marginal ice zone (MIZ)

- The marginal ice zone is the interface between the open ocean and the inner pack
- During winter ocean surface waves promote the formation of pancake ice in the marginal ice zone
- Pancakes can become highly dynamic and move the ice edge rapidly ^[1,2], or consolidate and expand the inner pack

[1] Vichi et al., Geophys. Res. Lett, (2019).[2] Alberello et al., JGR, (2020).

Pancake ice in the Antarctic winter marginal ice zone ^[2].

Floe size distribution (FSD)

- We chose CICE6 as it includes a prognostic joint floe size and ice thickness distribution
- This allows us to simulate floe size processes such as:
 - Lateral growth and melt
 - The size of newly formed floes (pancakes, nilas, etc)
 - Welding between floes
 - Wave-induced ice breakup

Model configuration

- We use standalone CICE6.2.0 at 1° resolution
- The last 5 years (2015-2019) of the 10-year run are used for analysis

Ice concentration (a_i) and mean thickness (h) are passed from CICE to the wave module which calculates significant wave height (H_s) peak period (T_p) and the angular wave spectrum ($S(\omega)$) across the ice cover.

A wave propagation module was added to enable the wave breakup and new floe routines

Unsupervised classification of sea ice data

• An unsupervised statistical method (*k*-means) is used on 8 ice cover outputs from CICE to classify the sea ice into distinct regions

Class 1: Young, thin, large floes (inner pack)

Class 2: Older, thick, large floes (inner pack)

Class 3: Small floes in lower SICs (marginal ice zone)

Average values of key variables in each class

Maps and seasonality of the sea ice classes

- 'Young ice' follows a summer-winter cycle
- As winter progresses ice transitions from the 'young' \rightarrow 'older' class
- The MIZ reaches a maximum extent over winter but has a second peak in summer

The impact of floe size on MIZ classification

- We excluded 'mean floe size' from our dataset to test the impact of floe size
- The classification method was repeated on the remaining 7 variables
- The MIZ without floe size information is driven by sea ice concentration instead of floe size

Widths of different MIZ definitions

- data^[3]
- ice concentration definition of 15 80% ^[4]

• By including the floe size in our definitions we obtain a much larger winter marginal ice zone which agrees with a wave height MIZ definition from satellite

Removing floe size information results in a MIZ that follows the traditional sea

Conclusion

- We used an unsupervised classifier to measure the extent and seasonality of the Antarctic marginal ice zone <u>with</u> and <u>without</u> the inclusion of floe size data
- Removing floe size information from the classification produces a sea ice concentration driven definition for the marginal ice zone
- Including mean floe size in the classifier produces good agreement with a wave height based marginal ice zone definition

Supporting slides References

1. Vichi, M. et al. Effects of an Explosive Polar Cyclone Crossing the Antarctic Marginal Ice Zone. *Geophysical Research Letters* **46**, 5948–5958 (2019).

2. Alberello, A. *et al.* Drift of Pancake Ice Floes in the Winter Antarctic Marginal Ice Zone During Polar Cyclones. *Journal of Geophysical Research: Oceans* **125**, e2019JC015418 (2020).

3. Brouwer, J. *et al*. Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2. *The Cryosphere* **16**, 2325–2353 (2022).

4. Strong, C., Foster, D., Cherkaev, E., Eisenman, I. & Golden, K. M. On the Definition of Marginal Ice Zone Width. *Journal of Atmospheric and Oceanic Technology* **34**, 1565–1584 (2017).

11

Supporting slides Ice thickness distribution in the first floe size category

Supporting slides Floe size distribution of each 10^1 class

Sea ice concentration [%] 10^{-} 10^{-2}

 10^{-4}

 10^{-5}

Supporting slides Mean values with and without floe size

Supporting slides Maps of classification without floe size

2019-12-31

2019-09-01

