Subsurface warming of West Antarctica during El Nino
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* El Nino-Southern Oscillation (ENSO) modulates West Antarctic shelf water temperatures and can cause rapid basal
melting of grounded ice shelves, accelerating sea level rise
 However we lack understanding of the oceanic response to ENSO In this region due to sparse observations
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Fig. 1. a, ¢, Composite time series associated with ENSO sea surface
temperature anomalies based on observed events. b, d, Spatial
patterns of sea level pressure (hPa) and surface winds (m s) during
'the shaded EI Nino (pink) and La Niha (blue) periods in a, c.
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Response of the West Antarctic shelf to EI Nino & La Nina
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Fig. 2. a, b, Peak event 100-1000 m mean temperature response
(°C). ¢, d, Mean across-shelf temperature responses 150°W-60°W
(°C). e, f, Mean Ekman transport velocities (m=3 s). g, h, Eulerian
_heat budget anomalies (10° W m-¢) throughout the simulations.

Fig. 3. a, b, Schematic of anomalous physical
processes on the West Antarctic shelf during El
Nifio and La Nina. * = key findings in Paolo et
al. (2018).
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