Regional Modelling with MOM6 The East Australian Current as a test-bed

Chris Chapman (CSIRO), Augus Gibson (ANU/COSIMA), Andy Hogg (ANU/ACCESS-NRI), John Reilly (IMAS/UTAS), Bernadette Sloyan (CSIRO), Bec Cowley (CSIRO), Russ Fiedler (CSIRO), Andrew Kiss (ANU/COSIMA), Jules Katja (IMAS/UTAS), Neil Holbrook (IMAS/UTAS), and many others!

The EAC – a primer

- The western boundary current for the South Pacific Gyre;
- Highly variable:
 - "The flow patterns in the East Australian Current are so complex and variable that it is often difficult even to decide whether a single continuous current exists" (Godfrey et al. 1980)
- Influences heat, salt, nutrients, etc for the east coast;
- Warming ~4x global average rate!

Tropical coral growing near Manly, NSW (Booth & Sear 2018)

The EAC Transport array

CSIRO/IMOS mooring program from 2012 to
2022 (gap from 2013-2015);
Transport from 60 Sv southwards (~Gulf
Stream) to 5
Sv northwards (reversal!);
Evidence that EAC
transport influenced by
remote drivers (Sloyan & O'Kane 2015, Bull et al.
2020) and

•Also evidence suggesting local influences (Chapman et al., in revision)

Photo by Thomas Moore

The EAC Transport array

Moorings show strong evidence of maximum current strength at depth
Seasonality – stronger in summer, weaker in Autumn

Regional Ocean Modelling – more complex than you think!

- Outgoing waves need to exit without spurious reflection;
- Incoming waves need to propagate with appropriate phase speeds;
- Simple boundary conditions (Dirichlet, Neumann, etc...) can yield unphysical values;
- Inappropriate boundary conditions affect the interior solution!!!

Regional Ocean Modelling – more complex than you think!

• Radiation boundary conditions generally employ the Sommerfeld condition:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial n} = 0$$

• Schemes differ by how they compute phase speed *c*

MOM6 – EAC a test-bed for regional modelling

- A regional (PNG to Tasmania, East Coast to New Zealand) MOM6 configuration
- Repeat neutral year (1991) surface forcing from 3 hourly JRA, boundary forcing specified from final cycle of ACCESS-OMo1 RYF
- Currently using z* vertical coordinates (ALE tests are on the toodo list)
- 1/10° horizontal grid spacing, 75 vertical levels
- Test cases:
 - Long (30 year) run with Orlanski Radiation OBCs
 - Short (5 year) cold start run with **Raymond & Kuo OBCs**
 - Short (5 year) warm start run with **Raymond & Kuo Boundary OBCs**
 - Other runs (repeat ENSO year, ensemble generation,)

Intermezzo – Pawsey Supercomputing Center and *Setonix*

- These runs were NOT performed on Gadi but on the Pawsey machine Magnus;
- New machine, Setonix, coming on line within months;
- Gadi equivalent with some caveats:
 - Cray arch with AMD processors (limits intel complier suite)
 - *Slurm* workload manager (required modification to *Payu*)
 - Object file system in-place of group store (cloud-like... takes some getting used to)

MOM6 EAC – scaling

- Results from tests on Magnus (Pawsey) - we expect similar on Setonix;
- Linear scaling to ~8o cores (somewhat concerning – although no tuning);
- Good throughput per node;
- Performs similarly to MIT-GCM (runs with same domain on same machine.

Basic validation

- Seasonal cycle (strongest in summer, weakest in winter) well captured
- Too strong in summer, too weak in winter
- EAC core too far north and too far offshore

MOM6 EAC (20 year)

Basic validation

Variability is generally in the right place and right order of magnitude.
Too weak and too confined between 35
Too strong near the Torres Strait

Sensitivity to OBC scheme

- Test two OBC radiation schemes – Orlanski 1976, and Raymond & Kuo (1984);
- Raymond and Kuo are (technically) more sophisticated;
- Minimal effects on the interior solution, no craziness at boundaries
- Other schemes exist, but require implementation

Take home message

- A regional MOM6 implementation for the Tasman Sea
- Further validation is ongoing
- Model gives good scientific results – room for improvement
- Scaling is a bit concerning
- This is a test-bed the number applications is (approximately) limitless!

Work in progress and future plans

- Early days (side project for most participants);
- Strong demand from stakeholders;
- Further developments need planning – ad hoc is bad;
- Community buy-in is key! We need you!

Activity	Progress
Ensemble system (à la OCCIPUT)	Almost there
Different domains	DONE!
IAF runs	Almost there
High resolution	In progress
Compiler/layout tuning	In pipeline
Hybrid vertical coordinates	In pipeline
Projection (CMIP) downscaling	Wishlist
Couple atmosphere/ocean	Wishlist

Thanks!

