Getting an ocean model to obey: Prescribing and perturbing exact fluxes of heat and fresh water

Jan Zika (UNSW),

Adam Blaker, George Nurser and Simon Josey (NOCS) and Nikolaos Skliris and Bob Marsh (U Southampton).

Primary Motivation: Ocean salinity and water cycle change

Helm et al. (2010), Durack et al. (2012), Zika et al. (2015), Lago et al. (2016), Skliris et al. (2016)

Puzzle:

In climate models and apparently in observations a global warming induced water cycle change of X% is associated with a surface salinity pattern change of ~2X%

Approach inspired by Marshall et al.

$$\frac{D_{res}}{Dt}(T_c + T_{anthro}) = Q(\mathcal{H}_c + \mathcal{H}_{anthro}) - \gamma(SST - SST_c) + R(T_c + T_{anthro}).$$
(2)

Here γ is a prescribed parameter which damps SST_{anthro} at a rate chosen to be proportional to the global radiative feedback within coupled models. This can be seen by writing

Marshal et al. (2014)

NEMO 1°

Potential Temperature Anomaly (C°)

Fluxes prescribed explicitly

Anomalies with respect to control after 100yrs

30°N

0°

30°S

90°E

180°

90°W

0

2

-2

Anomalies with respect to control after 100yrs

Testing a simple water cycle / salinity model

DSST (^oC): FW=0/HF=0 - Control

DSSS: FW=0/HF=0 - Control

Testing a simple water cycle / salinity model

Years

Ocean warming reduces mixing

WF change vs. WF+HF combined change experiments Freshwater displacement and W change after 100 yrs with respect to Control

b) Mixed layer depth response to surface heat flux (m/decade)

Water cycle, warming and ice mass loss contribute to salinity pattern change

						1				
-0.05	-0.04	-0.03	-0.02	-0.01	0	0.01	0.02	0.03	0.04	0.05

e) Response to idealised ice mass loss (pss/decade)

0

0.002

0.004

0.006

0.008

0.01

-0.01

-0.008

-0.006

-0.004

-0.002

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Based on observational estimates of warming, ice mass loss, salinity change and global temp we estimate the water cycle has changed by 3-7% per °C warming.

a) 1

Surface air temp. anomaly (Δ SAT)

30

Ocean heat content anomaly

Glacial mass loss

Sea-ice mass loss

° 0.5

0

Conclusions

- Prescribing exact fluxes is doable;
- Water cycle change does not affect SST much but warming affects SSS a lot;
- Global salinity contrast has fast and slow effects (no single timescale);
- Warming reduces mixing, causing approximately 30-50% of SSS pattern change;
- Salinity pattern change suggests 3-7%.