
Parallel IO in MOM5
Rui Yang and Marshall Ward

IO patterns in MOM5
IO Patterns

(write)
Number of

Output Files Run Time Post-processing Time

Serial IO Single
File per global

domain
1 long none

Serial IO Single
File per IO

domain
IO domains moderate long

Serial IO Single
File per PE PEs short long

Parallel IO 1 scalable
towards short none

Parallel IO can also reduce the memory requirement when creating a
single output file.

Parallel IO Implementation in MOM5

• Parallel API to open/create the NetCDF files i.e. nf_create_par and nf_open_par.

• All fields are operated as collective read/write fields, via the NF_COLLECTIVE tag,

as required for variables with an unlimited time axis and for good performance.

• MPI-IO hints are customized for performance fine-tuning.

• The root PE of each IO domain, i.e. IO tasks, are grouped in a sub-communicator
via FMS subroutines for parallel IO purpose.

• All implementations was written in a way to take advantage of existing FMS
functionality.

• New namelist variables have been introduced to enable parallel IO and choose

libraries:

&mpp_io_nml
parallel_netcdf = .true. #enable parallel IO
pnetcdf = .true. #choose PnetCDF or HDF5 lib.

/

Parallel IO Benchmark
Layer Parameter Value

Model Configurations
1-day simulations with diagnostic output enabled.
• 0.25° model (1440✕1080) for IO tuning
• 0.1° model (3600✕2700) to verify IO performance

Output Diagnostic

Diagnostic fields: T, S, u, v, tage
Diagnostic file write frequency:
• 30 minutes for 0.25°, 48 steps, 70GB
• 5 minutes for 0.1°, 288 steps, 2.7TB

Benchmark

PE 240, 960 for 0.25° model ,720,1440 for 0.1° model

Domain Layout 16✕15 for 240 PEs, 32✕30 for 960 Pes (0.25°)
48✕15 for 720 Pes,48✕30 for 1440 Pes (0.1°)

IO library & Format

NetCDF v4.6.1 with the following libs&formats:
• HDF5 v1.8.20 & NC4 (default chunk)
• HDF5 v1.10.2 & NC4, NC4-classic(default chunk)
• Parallel NetCDF v1.9.0 & NC classic 64bit-offsets

Parallel IO tuning parameters

Layer Parameter Value

IO domain IO layout
(Ioy ✕ Ioy)

iox=32,16,8,4,2,1
and
ioy=30,15,5,3,1

NetCDF chunk default

MPI-IO
Cb_buffer_size 32MB

Cb_nodes number of PEs
Naggr/node 1,2,4,8

Lustre Stripe size 1MB
Stripe counts 15,30,60,120,165(max)

Filtered out many other MPI-IO parameters based on our experiments and experiences.
Experiments are carried out at NCI Raijin supercomputer nodes with 16 cores/node.

Serial single file IO (global domain)

0.25° Model 240 PEs 960 PEs

Time (s)
64-bit offset

(PnetCDF
1.9.0)

NC4
(HDF5

1.10.2)

NC4-classic
(HDF5

1.10.2)

64-bit offset
(PnetCDF

1.9.0)

NC4
(HDF5

1.10.2)

NC4-classic
(HDF5

1.10.2)
Total runtime 637.82 687.20 675.93 629.33 671.95 675.40
mpp_open 7.46 6.39 6.31 15.62 14.97 14.41
mpp_read_meta 3.90 3.73 3.85 6.16 4.88 4.92
mpp_read 4.58 4.15 4.18 2.37 2.43 2.61
mpp_write_meta 0.01 0.01 0.01 0.00 0.01 0.01
mpp_write 545.50 592.39 584.86 576.92 616.35 618.08

mpp_write_3d 69.77 72.00 72.50 72.82 76.58 77.53
mpp_write_4d 475.72 520.22 512.27 504.09 539.58 540.44

mpp_close 0.65 0.96 1.10 1.23 2.37 2.47

Serial single file IO is used as the reference.
Serial single file IO does NOT scale well to PEs.

Diagnostic output (u) from Parallel IO

IO tuning: IO domain

• Each node contains at least 1 IO domain to avoid inter-node communications.
• Each node uses 1~4 PEs to reduce the IO contentions.
• PnetCDF&NC Classic has the best performance.
• Parallel IO scales to PEs, and is much quicker than serial single file IO.

Serial single file IO:
HDF5_1.10.2:687
PnetCDF_1.9.0:638
HDF5_1.10.2_NC4_classic:676

Serial single file IO:
HDF5_1.10.2:672
PnetCDF_1.9.0:629
HDF5_1.10.2_NC4_classic:675

240 PEs (16*15)

Ncore/node=iox

Nnodes=ioy

960 PEs (32*30)

Ncore/node=iox/2

Nnodes=ioy*2

IO tuning: aggregator and stripe counts

Use 1~2 aggregators per node and Lustre stripe count should match total number of aggregators.

Serial Read .vs. Parallel Read

In MOM, Serial READ is more stable and faster than parallel READ.

0.10°Model Configuration based on
optimal IO settings

Configurations 720 PEs 1440 PEs

Domain Layout

48✕15
(720 PEs,

16 PEs/node,
45 nodes)

48✕30
(1440 PEs,

16 PEs/node,
90 nodes)

IO Layout
3✕15

(1 IO domain/node,
45 IO domains)

3✕30
(1 IO domain/node,

90 IO domains)
Aggregator 1/node, 45 in total 1/node, 90 in total

Stripe count 45 90

IO performance in 0.1°Model

Time (sec.) NC4 (HDF5 1.10.2) NC 64-bit offset (PnetCDF 1.9.0)

IO Pattern SIO PIO PIO SIO PIO PIO
PEs 720 720 1440 720 720 1440
Total runtime 21689 1867 1118 19726 1535 812
mpp_open 8 78 128 9 29 74
mpp_read_meta 2 6 6 3 7 5
mpp_read 25 20 35 15 20 30

mpp_write 20826
(5.8 hrs)

909
(15 mins)

483
(8 mins)

18839
(5.2 hrs)

656
(11 mins)

325
(5.4 mins)

mpp_write_3d 458 27 12 455 69 9
mpp_write_4d 20369 880 469 18385 586 315

mpp_close 8 68 100 0 1 0

SIO: serial IO single file per global domain; PIO: parallel IO

• Parallel write is much faster than serial write.
• Parallel IO is scalable to number of nodes/aggregators, but limits at 165 (2640 PEs).
• NC classic format is 20%~30% faster than NC4.

Summary and Future Work

Summary
• Parallel write wins both performance and management

.vs. serial write.
• Use serial read in MOM.
• IO tuning is necessary to gain good performance.
• Parallel IO performance scales with aggregators.

To do
• NC4 format needs further tuning work, i.e. chunking.
• Parallel compression in HDF5 1.10.2 and NetCDF v???

Acknowledgements

