CLIMATE ANALYSIS FORECAST ENSEMBLE
/5 r7 \‘é)

Coupled data assimilation and ensemble initialization with appli-
cation to multi-year ENSO prediction. (submitted J. Climate)

Terence O’Kane,

https://research.csiro.au/dfp/ http://nespclimate.com.au/decadal-prediction/




1 Ensemble forecasting

Probability

The aim of data assimilation is to obtain a near optimal estimate of the state of the climate system, based on
observations and on short term forecasts, that provide the so-called background states with information in the

data void areas.

Ensemble prediction uses probabilistic forecasts to gain information about the predictability of the current cli-
matic state and or the probability of the transition to a new state or regime. Larger ensemble spread is an
indication of less predictability in a given regime.

Over finite times the growth characteristics (pdf) of errors (instabilities) of the ensemble forecast can be char-

acterised by choice of initial forecast perturbations.

For multi-scale systems the problem is further complicated by the presence of regimes and by the
need to select spatio-temporal scales relevant to the target forecast lead time.

le—{ Assimilating Run
Control Forecast
in Zonal State

Error of Ensemble Mean
in Dipolar State

Ensemble Forecast
in Zonal State

Control Forecast
in Dipolar State

Ensemble Spread
in Dipolar State

N

RMS Error
ruth

RMS Error

o Iy
® o

o
=)

—— Data Assimilating Run

— Control Forecast

— Ensemble Mean Forecast

— Best Forecast

Time (100 eddy-turnover times)




2.1 Kalman filter

Consider a system with model dynamics given by ® and considering an n-dimensional state vector
x at timestep ¢, a g-dimensional state space noise process vector w due to disturbances and model

errors and an observatioAn vector d with measurement noise v. Next, let us assume v = d the
observation error where d and w are white such that the analysis and forecast fields are defined as

xM = (x*) +x™ (1a)
xfi = (xf) + &f (1b)
d' = (d) +d (1c)

where i = 1,2, ...,k runs over the entire ensemble and where (d(¢)d” (#)) = §(t — t')D(t, t),
(w(t)ywT () = 6(t—t")Q(t,t),and (v(t)wT (¢')) = Ofor V(¢,t'). The Kalman filter propagates first
and second moments of x recursively where x(t+46t) = ®[x(t), w(t),t] and d(t) = H[x(t), v(¢), ]
can in general be nonlinear. ® represents the model dynamics. Assuming that the perturbation field
denoted " runs over the entire ensemble, we can write the recursive Kalman filter equations as

x* = x' + K(d — Hx') (2a)
P? = (I - KH)Pf (2b)
K = P'THT(HP'HT + D) ! (2c)

where K is the Kalman gain, P is the positive definite state covariance error matrix, I is the indentity
matrix, and H is the linearised observational operator mapping forecast grid point values onto obser-
vational points. A forecast model ® maps the analysis state at time ¢ to a forecast state at time ¢ + ot
such that x/ (t + t) = ®(x%(t)) + w(t).



2.2 Kalman Filter

ETKF applies a Kalman filter with k-forecast and k-analysis perturbations

1
z! = zf,zf,...,zf, 3
]{,‘—1[1 2 k] ()
Za 1 [a a a] (4)
= ——\Z,29,...,Z
L —1 1> 42 k
where the n-dimensional state vectors zlf = x{ —x/and z¢ = x¢ —x* (i = 1,2,...,k) are

k-ensemble forecast and analysis perturbations and x the ensemble mean.

For convenience, we have assumed x! is the mean of k-ensemble forecasts and x2 is the ensemble
mean analysis. The ETKF acts to choose appropriate initial forecast perturbations consistent with
error covariance update equations within the vector subspace of ensemble perturbations formed as

Pf = ZfZf" and P2 = Z2Z2" . In order to calculate the normal ETKF transform matrix T, we are
required to calculate the matrix of ensemble perturbations in normalised observation space, i.e.
E = (D"Y2HZ"T (D Y/?HZ ) (5)

where H maps from Z/ into observable space and D'/? does the renormalization.



2.3 Kalman Filter

We are next required to find the eigenvectors C and eigenvalues I' of Eqn. 5 which is equivalent to

the matrix Z{" HD~'HZ’. The transform matrix T is now defined in terms of the k x (k — 1) matrix
of non-zero eigenvalues such that

T =C( +1)/2CT (6)
which corresponds to the transform matrix in spherical simplex form. The ETKF transformation from
forecast to analysis perturbations can be expressed as

7 =7/T (7)

where
T=C([+1I)'/? (8)

where C contains the column orthonormal right SVs (c;) and T' is a diagonal matrix containing

squared singular values ()\;) of R-Y/?HZ’ with R the p x p observational error covariance ma-
trix and H the linearised observational mapping the forecast grid point values into the observational
space.

BVs can be seen as replacing T by a renormalisation using a suitably chosen rescaling norm.



Ensemble prediction 3.1

Bred vector generation

Random initial perturbations with prescribed
RMS whose amplitude defines the rescaling.
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3.2 Bred vectors

The local growth rate of the bred vectors is given by

9(t) = == —log((l5w()] /10w, ) (9)

where 07" is the rescaling interval and dwy, is the bred vector at time
t = 0.

More generally we may define the relative amplification factor in terms
of the vector of grid-point values of the bred vector of any climate vari-
able field as x(dt, t) initiated at time ¢ and evolved to time dt + ¢.

We take the Ly-norm as the r.m.s of the vector by ||x(dt,%)|| and de-
fine the amplification factor as A(dt,t) = ||x(dt,t)||/x(to,t)|| and the
local total growth rate §(t) = + log A(6t, ¢).



4.1 Paradigm Model

Paradigm model for ocean-tropical-extra tropical atmosphere coupling

(Pena and Kalnay(2004)):

Te = 0(Ye — Te) — Co(Sxp + k1)
ye =TTe — Ye — TeZe T+ Ce(Syt + kl)
Ze = TeYe — b2,

Ty =0y — 1) — c(SX + ko) — ce(Sze + k1)
Y =12 — Y — 2 + c(SY + ky) + ce(Sye + ki)
Z’t = TtYt — bzt + CZZ

X:TO'(Y—X)—C(CCt—I—kQ)
Y:TTX—TY—TSXZ—i—C(yt—i—kg)
Z=7SXY — 767 — ¢,z

(10a)
(10b)
(10c)

(11a)
(11b)
(11c)

(12a)
(12b)
(12c)



4.2 Paradigm Model

"Ocean” assimilation coupled covariances: Static background covariances
Analysed tropical atmosphere is on a different attractor. Variance of extra-tropical atmosphere un-
changed.
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4.3 Paradigm Model

"Ocean” assimilation - coupled covariances: Flow dependent background covariances.

Analysed tropical atmosphere is on the attractor.

pressed.
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5 CAFE system design

Schematic of the CAFE system
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6 Analysed state (20°S-20°N)

"Ocean” assimilation only: Comparison EnOl versus ETKF

SST (K)

#obs

0 PaA\/al\a ANV MY SVANWVN
'I\/I UJ IVJVIVI IVI 1 IW\WI

e 3
- i
_0.5 1 1 1 1 1 1 1 1 1 1 1L 1
2002 2003 2004 2005 2006 2007 2008 2009 2010 20112012 20132014 2015
%104
3 wv
" Q
o o
s H*

1 1 1 L NA”™
20022003 2004 2005 2006 2007 2008 2009201020112012 2013 2014 2015




7.1 Scale selection

e [ocalisation length scales and adjustment of observation impact factors to "tune” increments to select spatio-temporal
scales of relevance to given forecast lead times.

e mask regions of variance relevant to those chosen spatio-temporal scales such as the in band variance for temper-
ature with an appropriate threshold (0.5 RMSE calculated from 500 years of control simulation).

1-2 months

8-12 months 24-48 months 48-96 months




6 Analysed state (20°S-20°N)

Comparison of ensemble averaged BV’s (shaded) and EnOI/ETKF analysis increment (contour) along sections at
140°W and 2°S.
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7.2 Scale selection

isosurface BV growth rates 3 times larger than 20°S-20°N BVs

Obs Multivariate ENSO Index (MEI) (Black overlay)
a) growth rate of average BV per month (1-2 month isosurface) correlation to MEI
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8.2 Tropics-Extra-tropics

Coherent tropospheric response to modulation of tropical convection
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8.1 Tropics-Extra-tropics

Comparison of ocean and atmosphere increments averaged over the boreal winter (DJF) along
140°W (ETKF a); EnOl b) and 2°S (ETKF c); EnOlI d)

Temperature increments (DJF)
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8.1 ENSO Prediction

e Ensemble spread versus analysis increment during build up to 2016 El Nifo.
e BVs add similar flow dependent structures to ETKF background covariances.

SST October 2015
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8.2 ENSO Prediction

e Ensemble forecasts beginning January 2007 comparing isosurface BVs to BVs generated between 20°N-20°N BVs (renor-
malised to 1% of the background RMSE).

e Spread reduced in isosurface ensemble due to reduced spurious error growth.
e DAO & DA1 are reanalysed state estimates.

Note: no SST perturbations are used in isosurface BVs - predictability comes from thermocline perturbations)
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8.3 ENSO Prediction

a) Bias corrected ETKF and EnOl+isosurface forecasts. b) Analysed state and bias.
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Conclusion

e A properly observed ocean is required to constrain the slow climate "manifold”

e For multi-year forecasting we do not try to track the fast convective or synoptic
scales of the atmosphere but rather excite the slow predictable modes coupled to
the ocean.

e Optimal perturbations for state estimation are not necessarily optimal for forecast-
ing a given climate mode at a given lead time and should be augmented or replaced
by perturbations specific to the phenomena of interest.

e Here we show that it is possible on seasonal timescales to modulate the mid-
troposphere jets via targeted perturbations to the tropical thermocline however,
how longer timescale memory residing in the subtropical oceans is communicated
to, and to he response and predictability of, the atmosphere to these perturbations
is still unclear.

e The CAFE system is being developed as a tool to target and understand the mech-
anisms by which coherent variability determines predictability in the climate system
in the near term.
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