Geosci. Model Dev., 10, 2567–2590, 2017 https://doi.org/10.5194/gmd-10-2567-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation

Rachel M. Law¹, Tilo Ziehn¹, Richard J. Matear², Andrew Lenton², Matthew A. Chamberlain², Lauren E. Stevens¹, Ying-Ping Wang¹, Jhan Srbinovsky¹, Daohua Bi¹, Hailin Yan^{1,a}, and Peter F. Vohralik³

The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6

David P. Keller¹, Andrew Lenton^{2,3}, Vivian Scott⁴, Naomi E. Vaughan⁵, Nico Bauer⁶, Duoying Ji⁷, Chris D. Jones⁸, Ben Kravitz⁹, Helene Muri¹⁰, and Kirsten Zickfeld¹¹

OCEANS AND ATMOSPHERE www.csiro.au

Geosci. Model Dev., 11, 1133-1160, 2018

https://doi.org/10.5194/gmd-11-1133-2018 © Author(s) 2018. This work is distributed u

the Creative Commons Attribution 4.0 Licens

Ocean Reversibility: Results from ACCESS – ESM1

Andrew Lenton, Tilo Ziehn, CSIRO O&A, ACE CRC, CSHOR

What is CDR-MIP?

An initiative that brings together a suite of Earth System Models (ESMs) and Earth System Models of Intermediate Complexity (EMICs) in a common framework to investigate Carbon Dioxide Removal (CDR)

Exploring:

•The degree to which CDR could mitigate or even reverse climate change

•The potential risk/benefits of different proposed CDR

•To inform how climate and carbon cycle responses to CDR could be included when calculated and accounting for the contribution of CDR in mitigation scenarios

Endorsed CMIP6 - MIP

Framework to consider overshoot

CDR-MIP Experiment *CDR-Reversibility*

IOP PUBLISHING

Environ. Res. Lett. 7 (2012) 024013 (9pp)

ENVIRONMENTAL RESEARCH LETTERS doi:10.1088/1748-9326/7/2/024013

Reversibility in an Earth System model in response to CO₂ concentration changes

O Boucher¹, P R Halloran, E J Burke, M Doutriaux-Boucher², C D Jones, J Lowe, M A Ringer, E Robertson and P Wu

DEVICED

Simulating the Earth system response to negative emissions

C D Jones¹, P Ciais², S J Davis³, P Friedlingstein⁴, T Gasser^{2,5}, G P Peters⁶, J Rogelj^{7,8}, D P van Vuuren^{9,10}, J G Canadell¹¹, A Cowie¹², R B Jackson¹³, M Jonas¹⁴, E Kriegler¹⁵, E Littleton¹⁶, J A Lowe¹, J Milne¹⁷, G Shrestha¹⁸, P Smith¹⁹, A Torvanger⁶ and A Wiltshire¹

Geophysical Research Letters

@AGU PUBLICATIONS

A more productive, but different, ocean after mitigation

10.1002/2015GL066160

RESEARCH LETTER

Jasmin G. John¹, Charles A. Stock¹, and John P. Dunne¹

Key Points: • Marine primary productivity exceeds

¹Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey, USA

CDR-Reversibility: SST

CDR-Reversibility: SST

CDR-Reversibility: CO, fluxes

SST vs Air-sea CO₂ fluxes

SST

Large hysteresis

CDR-Reversibility: MLD (0.03)

CDR-Reversibility: MLD (0.03)

CDR-Reversibility: Surface Nitrate

Imbalance between cooling subsurface and warming ocean -> slow return

300+ years after returning to PI

CDR-Reversibility: Surface Productivity

300+ years after returning to PI

?? Shifts in Structure Marine Resources

CDR-Reversibility: Oxygen at 500m

Oxygen at 500m

300+ years after returning to PI

Temperature

Temperature at 500m

300+ years after returning to PI

CDR-MIP Experiment – *Time Scales*

CDR-MIP experiment C1

Thank you

Andrew Lenton Principal Research Scientist Climate Science Centre CSIRO Oceans and Atmosphere ACE CRC

- t +61 3 6232 5472
- e andrew.lenton@csiro.au

www.csiro.au

CDR-MIP Experiments

- 3. Afforestation / land use
- 4. Ocean alkalinization

CDR-MIP will be useful for other fields of climate science

- CDR-MIP output will be used to better constrain CDR in integrated assessment modelling (IAMs)
- Currently carbon cycle feedbacks are not accounted for when IAMs include CDR in scenarios like the RCP
- Adaptation Science

IPCC AR5. 201

C4 – Alkalinity Ocean Addition (AOA)

During a high CO₂ emission scenario (SSP5-8.5) add 0.14 Pmol Total Alkalinity yr⁻¹ to ice free waters from the year 2020-2100

50% of world's ships

Consider Alkalinity only not Iron or Silicic Acid associated with some forms of ALK e.g. Olivine

C4 – Alkalinity Ocean Addition (AOA)

TIME (years)

