

Mean and seasonal states of the ocean heat and salt budgets in ACCESS-OM2

Fabio Dias PhD Candidate

Catia Domingues Simon Marsland Nathaniel Bindoff Stephen Rintoul **Further information**

www.csiro.au

Ocean heat and salt budget analyses

$$\rho_0 c_p \frac{\partial \Theta}{\partial t} = -\nabla . (F_{ADV} + F_{DIA} + F_{KPP} + F_{SW} + F_E$$
$$\frac{\partial S}{\partial t} = -\nabla . (F_{ADV} + F_{DIA} + F_{KPP} + F_{EIT} + F_{EIT}$$

- Quantify heat/salt transport by each processes
- Potential to reduce steric sea-level projections spreading among climate models (CMIPs) through model inter comparison
 - 2012)

$F_{IT} + F_{SUBMESO} + F_{CONV} + F_{PME} + F_{RUNOFF} + F_{FRAZIL})$

 $-F_{SUBMESO} + F_{CONV} + F_{PME} + F_{RUNOFF} + F_{ICE} + F_{REST})$

differences in ocean heat uptake and vertical heat transport (Kuhlbrodt & Gregory,

Mean state - previous studies

- Munk abyssal recipe (1966): diapycnal diffusion downward balanced by large-scale advection upward
- Gregory (2000): global vertical transport dominated by Southern Ocean downward advection (winddriven) and upward mixing along isopycnals
 - later confirmed by other studies (e.g. Gnanadesikan et al. 2005, Hieronymus & Nycander 2013, Exarchou et al 2015)
 - parametrised eddy-advection (GM) also contributes to upward heat transport
 - Eddy-resolved models also agree with Gregory; e.g. Wolfe (2008), Griffies et al. (2015)
- Residual advection = mean + eddy-induced advection
 - comparison b/w coarse and eddy-resolved models
 - Kuhlbrodt et al (2015) suggested a new term:
 - Super-residual advection = Mean advection + Eddy-advection + Isoneutral diffusion
 - High-resol. models include or not parametrisation for isoneutral diffusion

Ocean-Sea Ice coupled model

- ACCESS-OM2 1-degree, 50 z* levels
 - al, *submitted*)

Global mean temperature and salinity by depth

• 1000-years spin-up forced with JRA55-DO Repeat Year Forcing (1984-85) (Tsujino et

Global vertical transport

- Upper-200 m dominated by:
 - **Heat:** SW penetration and surface heat fluxes (DIA) warming
 - convection and vertical mixing (KPP) cooling lacksquare
 - **Salt**: Diapycnal diffusion of salt freshens, all other terms salinify

Global vertical transport

- ullet
 - lacksquare
 - 700 3500 m: super-residual balance as found by previous works
 - Mean advection downward, eddy-induced transport upward
 - **Below 3500 m**: diapycnal diffusion downward, super-residual advection upward

Upper-700 m: Mixed layer processes are balanced by diapycnal diffusion and super-residual advection

Regional contribution: upper-300 m

- Net surface heat flux (DIA) is mainly balanced by mean advection
 - Tropics and WBCs
- Net surface salt flux dominated by restoring term:
 - also counterbalanced by advection
 - less intuitive spatial variability

Mean advection and eddy-transport

- Dominated along frontal regions ACC and Gulf Stream
- Northern flank of ACC: downward of heat by large-scale advection and upward by mesoscale eddies

Water masses definition:	
TW	$\sigma_{\Theta} < 24.5$
STMW	$24.5 < \sigma_{\Theta} < 26.6$
SPMW	$26.6 < \sigma_{\Theta} < 27.0$
IW	$27.0 < \sigma_{\Theta} < 27.5$
DP	$27.5 < \sigma_{\Theta} < 27.7$
BW	$\sigma_{\Theta} > 27.75$

Super-residual advection:

- Net effect of SR advection balances Mixed Layer processes
 - Deep mixed layer regions: SAMW, AAIW and NADW

SR advection and ML processes: seasonal variability

- processes hemispheric winter
- Compensated along the year by SR advection weak seasonality

• Mixed layer processes: strong seasonality as expected from water formation

Bottom water formation - convection

₹

Balanced by super-residual advection

 Poleward of 60°S: transport of cold water downward as bottom water (AABW) is formed

Weddell and Ross Seas

 Both SR advection and convection experienced significant seasonal cycle

Global balance below 700 m - role of diapycnal diffusion

- - counterbalanced by super-residual advection: cooling at NADW and AABW
 - erosion of AABW by NADW layer
 - original Munk's balance

Conclusions

- \bullet upward transport from mesoscale eddies
 - Southern Ocean has stronger and deeper transport than its northern counterpart
- - Diapycnal diffusion below 700 m: spreading and destruction of cold (NADW and AABW) water
 - suggest that Munk's balance, where mean advection can be interpreted as SR advection
- Strong dependence on parametrised processes:
 - vertical mixing (KPP, convection), submesoscale eddies, diapycnal diffusion
 - transport and therefore steric sea-level

Heat and salt budget in ACCESS-OM are dominated by downward transport from large-scale advection and

• These processes combined as super-residual advection balance different processes depending on depth:

Mixed layer processes at SAMW/AAIW and NADW formation regions, dominating upper-700 m budgets

• suggesting that particular choices on ocean models can play a large influence in vertical heat/salt