Separating internal variability from the forced signal

Leela Frankcombe

Matthew England, Michael Mann and Byron Steinman

Biases introduced by incorrect removal of forced signal

Biases introduced by incorrect removal of forced signal

Biases introduced by incorrect removal of forced signal

GMST in models

Errors due to different climate sensitivities of the models

Methods for removing the forced signal

Frankcombe et al., J. Clim., 2015

- Scale and subtract the multimodel ensemble mean
- But...

Using single model ensemble means

How many ensemble members are required?

Smoothing the ensemble mean is ineffective

 Even two ensemble members can be more accurate than using the multi-model ensemble mean

Using the MMEM is better than using the wrong SMEM

Estimated amplitude can be corrected

Multiple estimates of internal variability from observations

Future changes in amplitude of internal variability

Amplitude of variability during control

Future changes in amplitude of internal variability

Change in amplitude of variability between control run and RCP8.5

Future changes in amplitude of internal variability

Conclusions

- Using an unsuitable method to remove the forced trend can result in large biases in estimates of internal variability
- Useful single model ensemble means can be constructed with surprisingly few ensemble members
- The (scaled) multi-model ensemble mean is still the best estimate for observations
- Internal variability is projected to decrease along sea ice edges and increase over land at low latitudes

References

- Mann, Steinman and Miller (2014), On forced temperature changes, internal variability, and the AMO, Geophysical Research Letters, 10.1002/2014GL059233
- Steinman, Mann and Miller (2015), Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures, *Science*, 10.1126/science.1257856
- Frankcombe, England, Mann and Steinman (2015), Separating internal variability from the externally forced climate response, *Journal of Climate*, 10.1175/JCLI-D-15-0069.1
- Frankcombe, England, Mann and Steinman (2017), On the choice of ensemble mean for estimating the forced signal in the presence of natural variability, *in prep*