
Spurious Mixing in MOM6

An energetic approach

Angus Gibson

May 27, 2016

Motivation

- ▶ Understand the numerical accuracy of different:
 - remapping schemes
 - advection schemes
 - vertical coordinates
- Evaluate MOM6?

Reference (background) potential energy

- ► The lowest potential energy state of a fluid
 - Adiabatically resort to a stratified state
- Should be constant in an unforced model with closed boundaries
 - Increased by mixing; centre of mass is raised

$$RPE = g \int_{\Omega} z \rho^*(z) \, \mathrm{d}V$$

Gives no localised information

Looking at a timestep

- MOM6 is a generalised vertical coordinate model (ALE)
 - ▶ Clear distinction between along- and across-coordinate dynamics
- ► Take differences in RPE from different parts of a timestep to determine their contribution
 - $\qquad \Delta \mathrm{RPE}_{\mathsf{adv}} = \mathrm{RPE}_{\mathsf{post adv}} \mathrm{RPE}_{\mathsf{pre adv}}$
 - lacksquare $\Delta \mathrm{RPE}_{\mathsf{ale}} = \mathrm{RPE}_{\mathsf{post}} \ \mathsf{ale} \mathrm{RPE}_{\mathsf{pre}} \ \mathsf{ale}$

Overview

- ▶ We follow experiments from Ilicak et al. (2012) and Petersen et al. (2015):
 - Lock exchange (dam break)
 - Overflow (downslope flow)
 - Internal gravity waves
 - Baroclinic eddies
- Spurious mixing is investigated as a function of the grid Reynolds number:

$$\operatorname{Re}_{\Delta} = \frac{U\Delta x}{\nu_h}$$

Low viscosity

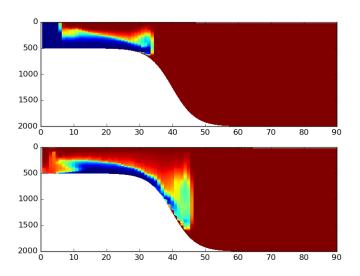


Figure 1: z^* coordinate at $Re_{\Delta}=1.5\times 10^5$

High viscosity

Figure 2: z^* coordinate at $Re_{\Delta}=1.5$

Low viscosity (sigma)

Figure 3: Sigma coordinate at $Re_{\Delta}=1.5\times 10^5$

High viscosity (sigma)

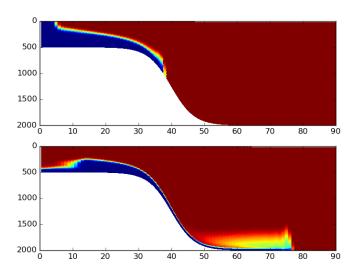


Figure 4: Sigma coordinate at $Re_{\Delta}=1.5$

Figure 5: Model comparison (mean dRPE/dt over entire run)

Baroclinic eddies

Figure 6: Surface snapshot

Figure 7: Solid: MPAS-O, dashed: MOM6

Figure 8: Model comparison

Figure 9: Direction split

Figure 10: Snapshot

Figure 11: Effect of coordinates

Figure 12: An explanation

Discussion

- High-order advection schemes?
- ► The effect of CFL number (edge differencing)
- Coordinate choices

Figure 13: