developments at BoM

Justin Freeman Mirko Velic Stefan Zieger Gary Brassington Prasanth Divakaran

2016 OceanMAPS 3.0

MOM4 + enkf-c 0.1° resolution -180° to 180°, -75° to 75°

Operational System

2017

OceanMAPS 3.1 MOM5 enkf-c 0.1° resolution -180° to 180°, -75° to 75° 6 member lagged ensemble (2 runs per day, 3 day cycle)

Alignment with reanalysis configuration

MOM5

reproduce current OceanMAPS 3.0 results MOM4 OFAM configuration mapped to MOM5 Added OceanMAPS 3.0 initialisation code to MOM5 Perform analysis, near real time and forecast runs

MOM5 vs MOM4 Evaluation Method

We employ a matrix factorisation method to quantitatively determine the similarity between model outputs

For a given field we determine a set of orthogonal basis functions and singular values

Comparison of the orthogonal basis functions for each model run provide a measure of similarity between the model outputs

We do not expect MOM4 and MOM5 to produce exactly the same result (or should we?)

2018/2019

OceanMAPS 4.0 MOM5 + CICE enkf-c Increase in ensemble member size (≥10)

2020/2021

OceanMAPS 5.0 MOM6/? CICE/? WaveWatch/? Coupled Data Assimilation

AUSWAVE-G

WAVEWATCH III (WW3) v4.18 (2016)

This included the use of a new physical spectral source term package (as used operational at NOAA/NCEP)

Forced by APS2 ACCESS-G surface winds

Spatial resolution 25 km Forecast length 10 days

Uses sub-grid-scale blocking to resolve small features (i.e. islands, reefs, atolls)

Ice concentration constant for entire forecast period

Ice used as threshold to determine if a grid point is masked as 'land'

Sea Ice WW3

Various grid types (e.g. curvilinear, unstructured, spherical multiple cell)

Interfaced with OASIS3-MCT to allow coupling with atmosphere and/or ocean models

Dynamical sub-grid-scale blocking to represent moving icebergs

Sea ice features (up-coming release): 4 wave dissipation options 2 wave scattering options

Analysis Systems

- http://130.56.244.252/
- Web Data Service, Hosted at NCI
- <u>http://godae.bom.gov.au:8080/thredds</u>
- OPeNDAP server, Hosted at BoM

← → C [] opendap.bom.gov.au:8080/thredds/catalog/oceanmaps_an_datasets/catalog.html

Catalog http://opendap.bom.gov.au:8080/thredds/catalog/oceanmaps_an_datasets/catalog.html

Dataset	Size Last Modifie	ed
OceanMAPS analysis datasets		
version_1.0/		
version_1.0a/		
version_1.0b/		
version_1.1/		
version_2.0/		
version_2.1/		
version_2.2/		
version_2.2.1/		
version_3.0/		

TDS Research Data service at Australian Bureau of Meteorology THREDDS Data Server [Version 4.2.8 - 20110727.2340] Documentation ☆ 〓

web visualisation service justin freeman duan beckett

Opengl custom API + glsl support

multiple frame buffer objects

- windowless, hardware accelerated rendering
- real time **H.264** encoding
- threaded texture manager

high resolution output (8000x4000 and beyond)

webgl

javascript API for 3D and 2D graphics provides hardware accelerated 3D in compatible browsers OpenGL ES 2.0

```
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight,0.1, 1000);
```

```
renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColorHex(0x000000, 1);
renderer.sortObjects = false;
```

threejs.org

javascript library for 3D supports HTML5 canvas, SVG and webgl threejs.org

visualization service

implement a webgl UI

+cross platform

+cross browser

fast opengl rendering on web server

high quality output

engagement with large data products

enable creativity and encourage exploration

flight jillong.bom.gov.au/flight

user interface

double click to add a control point

right click to delete a control point

select and drag a control point

double click a control point to edit properties

preview camera flight path in the browser

Flight details

Select parameter

✓ Please Select

OFAM 3

Sea surface temperature Sea surface salinity Sea surface temperature anomaly Sea surface salinity anomaly Sea surface velocity Sea surface height anomaly

select field

N	Novie created	×
1	Play movie	
		Close

create

Sea Surface Velocity Magnitude 28 September 2005

0.01

+titles +logos +colorbars

GALLERY

Sea surface height anomaly

From 01/01/2000 to 24/09/2004 Filesize: 67.8MB, Length: 01:12 Last modified: 07/06/2013 01:37 <u>Download »</u> ► ♂ ■ 前

Sea surface salinity

From 01/01/2000 to 08/11/2000 Filesize: 12.2MB, Length: 00:13 Last modified: 04/06/2013 02:20 Download »

From 01/01/2008 to 12/05/2015

Filesize: 93.5MB, Length: 01:52

Download » 🕨 🖸 🟛

Last modified: 03/06/2013 10:58

aue link-

Sea surface temperature

From 01/01/2000 to 11/01/2000 Filesize: 362.3kB, Length: 00:00 Last modified: 03/06/2013 04:54

Download » 🕨 🖸 🗎

Sea Surface Temperature

Sea surface temperature

From 01/01/2000 to 06/04/2000 Filesize: 3.8MB, Length: 00:04 Last modified: 03/06/2013 04:50

Download » 🕨 🖸 🗐 🛍

Sea surface salinity anomaly

From 01/01/2000 to 31/12/2010 Filesize: 162.2MB, Length: 02:47 Last modified: 03/06/2013 04:32

Download » ► C ■ iii

Sea surface velocity

From 01/01/2000 to 31/12/2010 Filesize: 162.2MB, Length: 02:47 Last modified: 03/06/2013 04:12 Download »

Significant wave height

From 01/01/2008 to 17/01/2014 Filesize: 79.9MB, Length: 01:32 Last modified: 02/06/2013 11:25

Download » 🕨 🖸 🗎

Significant wave height

From 01/01/2008 to 11/07/2008 Filesize: 6.6MB, Length: 00:08 Last modified: 02/06/2013 11:01

Sea surface salinity anomaly

From 01/01/2008 to 29/08/2009 Filesize: 22.8MB, Length: 00:25 Last modified: 02/06/2013 01:02

Significant wave height

From 01/01/2008 to 14/05/2010 Filesize: 26.2MB, Length: 00:36 Last modified: 31/05/2013 02:35

Sea surface salinity

From 01/06/2000 to 05/09/2000 Filesize: 1.9MB, Length: 00:04 Last modified: 28/05/2013 09:22

gallery

play, edit, copy and delete from the gallery

development

- + data sets
- + renderers
- server side processing improve UI

advection

regional

nTriangles 132158 nVertex 66600 camera -3.60, 1.80, 34.90 target -3.60, 1.80, -26.60 light 8.00, 4.00, 6.00

tsunami

nTriangles 524288 nVertex 263169 camera -0.40, 11.50, 29.75 target -0.40, 11.50, -10.25 light position 0.00, 8.00, 8.00

bathymetry

seasonal

boolean geometry

video textures godae.bom.gov.au/eview_africa/globe