Large-scale implications of
small-scale bottom-intensified
mixing
Maxim Nikurashin’
in collaboration with

Raffaele Ferrari?, Ali Mashayek?, Trevor McDougall® and Jean-
Michael Campin?

Energy dissipation [ogmg, (W/kg)

B tasvania? | TIMAS

INSTITUTE FOR MARINE AND ANTARCTIC STUDIES



Contents

01

Observations of mixing

02

Diapycnal upwelling/downwelling

03

Global estimates of mixing

04

Global diapycnal circulation

05

Idealised model results

B tasianin? | TIMAS

INSTITUTE FOR MARINE AND ANTARCTIC STUDIES




Brazil Basin observations of mixing

— Diapycnal mixing is
enhanced in the abyssal
ocean above rough

topography

Brazil Basin
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Global patterns of mixing from observations
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Diapycnal upwelling and downwelling
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Diapycnal upwelling and downwelling
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Diapycnal upwelling and downwelling
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Diapycnal upwelling and downwelling

— Bottom-intensified mixing drives
downwelling in the stratified ocean interior
and upwelling in bottom boundary layers _

stratified
interior
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Energy sources for mixing
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Global estimate of turbulent energy dissipation

(a) logio(€) [m2s™3]

-100

ﬁ [TJEIS\;E§S1\}¥X of ‘ % I MAS Mashayek et al, in prep

INSTITUTE FOR MARINE AND ANTARCTIC STUDIES 10



Global water-mass transformation rates

. . . 27.5 . .
— Total mixing-driven upwelling ] B o
(balancing the formation of 27.67 IB:II oanor™|
AABW) is a residual between o " 27.77% | |
downwelling in the stratified o 278} (W1 n~NaDW
ocean interior and stronger co7gl L
o o 27. [ & |
upwelling in bottom boundary R | i |
layers c [ |
SR N [ SR (S ———— [ —— -H
S 282 | e I
5 7 |
L o283l EIF AABW
28.4} ]
28.5 - | -
40 -20 0 20 40

Transformation rate [Sv]

UNIVERSITYof | —
ﬁ TASMANIA f — IMAS Ferrari et al. (2016), JPO

INSTITUTE FOR MARINE AND ANTARCTIC STUDIES 11




Idealised model results
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Summary

— Total upwelling of abyssal dense waters is a residual between
downwelling in the ocean interior and stronger upwelling along
boundary layers, unlike “Abyssal Recipes” by Munk (1966)

— This mixing-driven overturning circulation has implications for the
horizontal abyssal circulation (e.g. Stommel, 1958) as well as for
distribution and ventilation of tracers in the deep ocean

— While global models are invaluable for our understanding of oceans
and climate, some aspects of the model solution can be built-in by
our parameterizations and might be unphysical until proper
parameterizations are developed and implemented (e.g. Deacon
cell in the 90s!)
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Ongoing PhD projects .-__
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— PhD Luwei Yang, The role of wave
momentum stresses for the equilibration
of the ACC fronts and eddies and for the
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