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What is MOMG6?

* The Modular Ocean Model traces origins to
Cox, 1984.

— Past versions of MOM have been foundation of
other ocean models (POP, NEMO, ...).

— MOM is a comprehensive model of global ocean
circulation and regional applications.

— Traditionally a fixed vertical coordinate model.

« MOMG represents new generation of model

— Arbitrary-Lagrangian-Eulerian method used in the
vertical direction
* Allows adoption of any (arbitrary) vertical coordinate.
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MOMG6 development: Objectives
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Eddy parameterization |

® Even “fine—reSO|uti0n” OCeéan Mercator resolution that resolves deformation radius

models cannot resolve first- :::'_L“

mode eddies everywhere —-

* Adding a global eddy
parameterization dampens ..
resolvable eddies
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parameterization
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proceed when resolutionis
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Eddy parameterization Il

* Higher order closures

— Predicts scales to use in
eddy parameterization

e.g. Kk X U,L,
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Sea Surface Height Variability with Improved
“Backscatter” Eddy Mixing Parameterization

Observed CM2.6 1/10° Model
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Physically-based, energetically-consistent parameterizations of

diapycnal mixing

As part of NOAA/NSF Internal Wave-Driven Mixing Climate Process Team, we are developing and
implementing parameterizations of sub-grid-scale mixing which allow mixing to vary spatially

and evolvein a changing climate.

Schematic of internal wave processes (Amy v A 4 Solar heating

Waterhouse, SIO/CPT] aretratt eation ) Implemented in MOMG6:
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etal, 2013a
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modes
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and slope p/\/ Local Dissipation Developed:
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iniErectans M% topography. Klymak, Legg and
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reflection. Legg, 2013 interactions. Nikurashin and Legg, 2011
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CPT: Impact of Lee-wave driven mixing

 Lee-wave energy is
most significant in
Southern Ocean
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Improves model credibility
Melet, Hallberg, Nikurashin and Legg, 20




Porous barrier topography

Use PDF of topography
along edges (and within
column)

Real-world “actual’ values:
— areas/volumes

— sill-depths/ridge-heights

Maximum \

Mean B

Minimum

Adcroft, 2013
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MOMG6/SIS2 fact sheet

MOMBG6 unifies GFDL's ocean modeling -
efforts - best of MOM5 and GOLD

SIS2 modernizes our sea-ice model
Key personnel are all active participants

— Adcroft, Griffies, Hallberg, Harrison,
Krasting, Liang, Rosati, Winton, Zadeh, ...

Scalable on large parallel computers
C-grid discretization (replaces B-grid)
— No “Checkerboard” null mode

— Less smoothing of forcing required

Better representation of topography and
narrow channels

— No need for “Cross-land mixing”

MOMG6 and SIS2 are basis of OM4
ocean/ice component of CM4

Open development model (MOMG6+SIS2)
— All activity visible via GitHub

Geophysical Fluid Dynamics Laboratory

Lagrangian Vertical Dynamics

— Arbitrary Lagrangian-Eulerian method
(ALE)

— Tracer advection is not required for
gravity wave dynamics

— Able to use a wide range of vertical
coordinates

Implicit remapping replaces vertical
advection

— No vertical CFL limit on time steps
— Ultra-fine vertical resolution possible

Permits sub-cycled gravity-wave
dynamics vs. tracer advection

— Reduces cost to add tracers.

Handles wetting and drying, and evolving
geometry conservatively

e.g., moving ice-shelf grounding line
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Frontiers in ocean/ice-sheet model development

 Role of ocean eddies
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Sea-level rise and ice-
sheet/ocean interaction

Getz Ice Shelf
Antarctica

200 ft(60 m)

1500 ft below

ocean surface
(500 m)

Credit: NASA/Dick Ewers




Ocean Working Group: Objectives

* Eddying-resolution (2°) . Address biases of previous

ocean component models
— Admit large eddies and — Heat uptake/sea level
internalocean variability _ p.,osces/coupled interactss:
— Better resolve boundary overflows, cryosphere
regimes, e.g. Labrador Sea Jakobshavn & %° Mercator grid
boundary currents g

— Allow interactive dynamic
sub-ice shelf cavities

— Strategy:
e z¥-coordinate first

e Hybrid coordinates later
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'OM4 fact sheet

o % x W x75 levels * SIS2 on same horizontal grid
— Eddypermittingin low latitudes — Conservative thermodynamics
— Admitsinternal variability — Includesinteractive icebergs

— Betterresolvesboundarycurrent e Al [atest “physics”

regimes — Energetically based diffusive
— 2m near-surface resolution boundary layer
* More representative land-sea — Internal wave driven mixing
mask — Tidallydriven mixing
— ITF, Queen Eliz. Islands, Inlets,... — Mesoscale stirring
e Hybrid vertical coordinates — High-latitude energy-based

_ Use ALE method mesoscale eddy parameterization

— Initially developed with z*
— HyCOM-like hybrid coordinate * Variant with sub-ice-shelf cavities
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Can we do with 1/10t" at 1/4th?

High-resolution coupled models at GFDL

* Delworth at el., 2012 coupled model < Griffieset al., 2015, show that

series (CM2.1, CM2.5, CM2.6): transient eddies in a 0.1° ocean
— 200km, 100km, 50 km transport heat upwards
atmosphere — Least heat uptake of CM2.x series
—1°, %° and 0.1° ocean  For CMIP6, we can afford %° ocean
1.3°C 0.8°C

1.1°C
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Parameterizing eddies in an eddying model
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Vertical coordinates and drift

Role of vertical coordinate (%° ocean in CI\/I4)

Salinity (shaded)
Vertical grid (Ilnes)m

* Changing vertical coordinate alone
— z* to hybrid z*/p, (aka HYCOM)
— ldentical parameterization/atmos
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Revised sea-ice model: SIS2
° Compatlble with MOMG6 . Slngle pOintChannels .

— C-grid; moving “coasts” [F }' f -
— Multi-layer ice and F N
snow; variable salinity : B-grid 1°

Ice thickness
— Delta-Eddington
radiation (from CICE)

* Avoid high-resolution e L
coupling instabllities : . M | hickness

difference

— Dynamics part of ocean

 Collaborations
— MIT, LANL (CICE physics)
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Dynamic Ice-shelf-ocean Interaction
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Coupled Ice-shelf-ocean Interaction

MOMG6 %° Global Ocean Model
Coupled with Ice-Shelf/Sheet Model

Observationally Inferred Mass Loss
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lceberg Fresh Water Fluxes

iceberg meltwater flux [mm yr]

iceberg meltwater flux [mm yr]

e Icebergs distribute cold fresh water (and minerals) across ocean

%%oﬁ,hé%fg' B s Ce DoV Martin and Adcroft, Ocean Modelling, 2010



Tabular icebergs as bonded particles
Alon Stern and Alistair Adcroft

time = 0 days
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-shelf breakup

Alon Stern and Alistair Adcroft
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Projects impacting development

GFDL and Princeton Uni

 CMIP6, seasonal forecasting, data assimilation, process models
* Cryosphere coupling(sea ice, ice-shelf, ice bergs)
* analysis tools: budgets, Lagrangian particles, water masses

COSIMA

* process models, regional/global, analysis methods

e Curchitser’s team (Rutgers Uni)

* regional/coastal configs (open boundaries, downscaling)
* NCEP

e Seasonal forecasting CFSv3

e Data assimilation (Steve Penny)
* Couplingto Wavewatch (GFDL post-doc, NCEP engineer)
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Potential projects impacting future development

* NCAR / CESM
* CESM is switching to new ocean model.

* Have expressed interest in MOMB®6.

* US Navy
* HYCOM and MOMG6 share many methods.
* HYCOM needs a path for sustainability.
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For COSIMA discussion

MOMG6 is less mature than MOMS5, but...

* Very active development, bothdeep and broad
e ExistingMOMG6 global configurationsare betterthan
earlier MOMS5 configs; e.g., MOM5-025 vs MOM6-025

There are few ocean (and cryosphere) model development
projects with more resources devoted to pushingenvelope

on science applications, numerical algorithms, analysis methods,
and software engineering. NEMO is more mature, but unsure how
they would work with an active open source community.

GFDL (from hands-on scientists/engineersto managers) considers
COSIMA scientists and engineers as front line collaborators and friends.

Note: any projection for timelines from should be scaled up:
week—> month; month—>few months; year—>few years.
This point is relevant for any path taken by COSIMA.
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