1° versus 1/10° what are the implications for C_{ant} subduction in the Southern Ocean?

Southern Ocean contributes to 30% of sink of anthropogenic carbon dioxide

Olbers and Visbeck, 2005

OCEAN & ATMOSPHERE – OCEAN AND CLIMATE DYNAMIC PROGRAM www.csiro.au

Clothilde Langlais, Andrew Lenton, Richard Matear, Steve Rintoul, Didier Monselesan, Benoit Legresy, Matt Chamberlain, Paula Condepardo, Joan Llort, Sebastien Moreau, Andreas Klocker

What do we know about C_{ant} pathways? What are the gaps?

- Uptake at PF at 55°S
- Northward Ekman transport
- Subduction
- High inventory of Cant north of 55°S
- Regional hot spot of subduction

CSIRO

GAP : Physical mechanisms involved in Cant transfer through the mixed layer?

2 | Future of C in Southerh estails changes ct of resolution 1° versus 1/10°?

1/10^o Ocean Forecasting Australia Model (OFAM3) Zhang et al., 2016

1º ACCESS-O Matear et al.

- ²⁰ MOM4 ocean model
- ¹⁰• 50 z-level
- WOMBAT BGC model
- Ice model in 1°
- 20 yr Spin-up with 1979
- 1979-2014 historical run :

[°]JRA-55 surface forcing (bulk formulae)

- 2006-2101 projection run :
- ^{*} JRA-55 x3 + CMIP5 trend (rcp8p5

CSIRO

• 1979-2101 control run

Different ACO₂ air-sea fluxes 2007-2012? NO

ACO₂ air-sea fluxes 2007-2012

Different C_{ant} transfer through winter mixed layer? YES

Subduction = transfer through winter mixed layer

Marshall et al. (1993)

Standing meanders

Stationary equivalent barotropic Rossby waves with wavelength of 200 to 500 km

Intermediate and subantarctic mode water : 68%

No Standing meanders in 1° model

Pathways summary

northward transport

1° versus 1/10°?

Different Physical mechanism involved in subduction

Impact on Cant amount in ocean interior

csiro

Inventory below the mixed layer 2070-2100

MODELLING SUMMARY – Link with COSIMA 1/10° Ocean Forecasting Australia Model (OFAM3) Zhang et al., 2016 1° ACCESS-O Matear et al.

- MOM4 ocean model
- 50 z-level
- WOMBAT BGC model
- Ice model in 1°
- 20 yr Spin-up 1979
- 1979-2014 historical run :
- ² JRA-55 surface forcing (bulk formulae)
- ²⁰• **2006-2101** projection run :
- JRA-55x3 + CMIP5 trend (rcp8p5)
- • **1979-2101** control run

COSIMA

- Ice model YES!
- Spinup Marshall
- 1°, 1/10°, 1/30°
- 100 levels YES! Matt
- C-grid YES
- BGC model ?
- Bottom water ?
- Analysis tool ?

13 | Future of C in Southern Ocean | C. Langlais

Thank you

Business Unit Name Presenter Name **Presenter Title**

- **t** +61 2 9123 4567
- e firstname.surname@csiro.auw www.csiro.au/lorem

Business Unit Name Presenter Name Presenter Title

- **t** +61 2 9123 4567
- e firstname.surname@csiro.auw www.csiro.au/lorem

ADD BUSINESS UNIT/FLAGSHIP NAME www.csiro.au

Fig. Supp 1 : **Stationary Rossby waves: location and impact of resolution** . a. AVISO 1993-2014 time-mean geostrophic velocities and SSH contours and b. 1/10 ° model topography. Time-mean model horizontal velocities average over the top 200m and SSH contours (left), and time-mean model vertical velocities at 200m (right), for 3 different resolution: 1/10° (c. and d.), 1/4 ° (e. and f.) and 1 ° (g. and h.). Black contours show SSH contours with SAF and PF in bold.

Streamfunction along isopycnal 26.8-26.9

Fig. sup 7.: **Circulation and Cant inventory along isopycnals 26.8-26.9**: approximate isopycnal geostrophic streamfunction (m².s⁻²) (colors) referenced to 2000m as defined by McDougall and Klocker (2010) and inventory of Cant along the selected isopycnals (White contours from15 to 30 mol C m⁻² every 5 mol C m⁻²). Black lines are SSH contours with SAF and PF in bold. Blue patches show areas shallower than 2000m.

Anthropogenic Carbon (C_{ant}) in Southern Ocean

17 | Future of C in Southern Ocean | C. Langlais

Subduction = transfer through winter mixed layer 2070-2100

1/10[°]

ACO₂ air-sea fluxes 2070-2101

Air-sea CO₂ fluxes 2070-2101

south of PF Warming:

+50%

Mainly

- $+0.1 kg/m^{3}$
- 1°:
- +90%
- Mainly • south of PF
- Warming: • $+0.1 kg/m^{3}$

Air-sea CO₂ fluxes

Air-sea CO₂ fluxes 2007-2012

23 | Future of C in Southern Ocean | C. Langlais

Anomaly of Total C at 30°S (2090-2100)-(2010-2020)

24 | Future of C in Southern Ocean | C. Langlais

Physical pump

Anomaly of pH and Ωa undersaturation depth at 30°S (2090-2100)-(2010-2020)

1/10°

10

