Towards Modelling the marginal ice zone

Luke Bennetts

School of Mathematical Sciences

University of Adelaide, Australia

Australian Government

Australian Research Council

Australian Government

Department of Sustainability, Environment, Water, Population and Communities Australian Antarctic Division

Marginal ice zone (MIZ): roughly...

... not this

St Lawrence Estuary, Québec, Canada

St Lawrence Estuary, Québec, Canada

St Lawrence Estuary, Québec, Canada

© Dany Dumont, Uni Québec

St Lawrence Estuary, Québec, Canada

© Dany Dumont, Uni Québec

St Lawrence Estuary, Québec, Canada

St Lawrence Estuary, Québec, Canada

© Dany Dumont, Uni Québec

- 10 wave directions and 22° resolution
- Maximum floe diameter is initially set to 250 m.

5990

Max Floe Diameter

- Waves propagate into the ice-covered region and
 - break ice into smaller floes (left panel);
 - are damped by the ice-cover (right panel).

- Waves propagate into the ice-covered region and
 - break ice into smaller floes (left panel);
 - are damped by the ice-cover (right panel).

 Until the waves are damped to a degree that they can no longer break the ice.

Introduce wave-ice interactions using:

- Floe size distribution.
- Incident wave forcing.

CICE algorithm

```
do t=dt, 2dt, ...
```

Thermodynamics

heat conduction, vertical growth/melt,

lateral melt, new ice, melt ponds, snow Dynamics

 \cdot elastic viscous plastic rheology,

transport, ridging

end do

Introduce wave-ice interactions using:

- Floe size distribution.
- Incident wave forcing.

CICE algorithm

```
do t=dt, 2dt, ...
```

Thermodynamics

- \cdot wave-ice interaction code
 - $\rightarrow \, \mathrm{damping}$ and breakage
- heat conduction, vertical growth/melt, lateral melt, new ice, melt ponds, snow

Dynamics

 elastic viscous plastic rheology, transport, ridging

end do

New wave and ice variables

1 Floe size distribution parameter $D(\mathbf{x}, t)$

- In-cell average.
- $D = D_{lg} = 300$ m initially for consistency with old version.
- $D = D_{bk} = 30 \text{ m}$ if breakage occurs and $D > D_{bk}$.
 - \rightarrow Weighted average if breakage only in a proportion of cell.
- $D = D_{sm} = 5 \text{ m}$ if thickness < 0.1 m or concentration < 1 %
- Transported with concentration.
- Incident wave forcing from Wavewatch III.
 - At constant latitude outside ice cover \rightarrow can vary in time.
 - Reset each timestep.
- Simple floe bonding scheme implemented.
 - Floes double in size without waves and if freezing.
 - Stops small floes near coast in summer persisting through winter.

New wave and ice variables

1 Floe size distribution parameter $D(\mathbf{x}, t)$

- In-cell average.
- $D = D_{lg} = 300$ m initially for consistency with old version.
- $D = D_{bk} = 30 \text{ m}$ if breakage occurs and $D > D_{bk}$.
 - \rightarrow Weighted average if breakage only in a proportion of cell.
- $D = D_{sm} = 5 \text{ m}$ if thickness < 0.1 m or concentration < 1 %
- Transported with concentration.
- Incident wave forcing from Wavewatch III.
 - At constant latitude outside ice cover \rightarrow can vary in time.
 - Reset each timestep.
- Simple floe bonding scheme implemented.
 - Floes double in size without waves and if freezing.
 - Stops small floes near coast in summer persisting through winter.

Simulation: Antarctic, standalone, 1979–89

Simulation Antarctic, standalone, 1979–89

Simulation Antarctic, standalone, 1990–95

Future

Fully coupled model

• Where?!?

Floe-size dependent dynamics

- Drag in CICE 5 (Feltham group model)
- Modified rheology (Aksenov group integrating Feltham's granular rheology into CICE)
- Transport (models by Washington and Harvard groups)

More???

- Pancake ice
- Landfast ice
- Ice shelves