ACCESS-CM2 Development

Daohua Bi, and Hailin Yan, Arnold Sullivan CSIRO O&A, Ocean and Coupled Modelling Team

Australian Government Bureau of Meteorology

ACCESS-CM2 Development Plan

Features:

- Comprises all new component codes within the ACCESS1.4 framework. i.e.,
 - Atmosphere: UM10.x GA7
 - Land: Jules/CABLE2
 - Ocean: MOM5
 - Sea ice: CICE5 (or GIS8)
 - Coupler: OASIS3-MCT

Goals:

- Principal contribution of Australia to CMIP6/IPCC AR6.
- To be used for climate change and climate variability research/applications by the Australian Climate Community including BoM, Universities.

Prototype ACCESS-CM2

- UM8.5/GA6 atmosphere
- Jules land surface model
- Three versions different horizontal resolution

Resolution	Atmosphere	Ocean	Trial Simulation completed	Computing
Standard "N96O1"	N96 (~130 km)	1 deg.	200 years	496 cores, 5 y/d
Mixed "N96O. 25"	N96	0.25 deg.	350 years	2112 cores, 6 y/d
High "N216O. 25"	N216 (~60 km)	0.25 deg.	2 years	2688 cores, 1.5 y/d

 \blacktriangleright Strong collaboration with ARCCSS in $\frac{1}{4}$ -deg oceans.

NCI machine raijin "unstable" (frequent false "crashes")

Prototype version tests (PI forcing)

 So far all (long) tests have been conducted using the prototype CM2 which comprises UM8.5/GA6. Major tests (with mixed-resolutions) include:

Config-Res.	UM8.5	MOM5/CICE5	Job Status	Comp-Efficiency	Note
N96O1	N96	1-deg (PT)	200 years	496 cores, 5 y/d	unreproducible
N96O1(r)	N96	1-deg (PT)	200 years	496 cores, 5 y/d	reproducible
N96OQ	N96	1/4-deg (PT)	200 years	2112 cores, 5.6 y/d	unreproducible
N96OQn	N96	¼-deg (PT)	86 years	2112 cores, 5.6 y/d	nphy ON (aredi=300) unreproducible
N216O1	N216	1-deg (PT)	56 years	1376 cores, 2.5 y/d	UM fails
N216OQ	N216	¼-deg (PT)	2 years	2688 cores, 1.5 y/d	UM fails
N96OQct	N96	¼-deg (CT)	> 350 years	2112 cores >5 y/d	standard PI control
N96OQn	N96	¼-deg (CT)	100 years	2112 cores	nphy on (aredi=100)
N96OQgm	N96	¼-deg (CT)	30 years	2112 cores	GM on (50-600)
N96OQngm	N96	¼-deg (CT)	>180 years	2112 cores	nphy & GM both on
			Australian Covernment	The Original feat Association Mine	

Bureau of Meteorology

Some simulated ocean features

- Global ocean water temperature and global average annual mean SST
- SST bias (relative to PI condition)
- Ocean water transports: MOC and ACC
- ENSO and IOD Variabilities
- Sea ice

Australian Government

Bureau of Meteorology

Thermal "drifts" in the ocean interior (TG) and at the surface (SST)

Water transport (Sv): ACC through Drake Passage

Meridional Overturning Circulation (Sv)

ENSO (DJF)

10

0

0

з

6

9

Period (year)

12

15

18

•N96O1 yr 101-200 COESS. DSOPIZ EOF 1 37.3% 30N 0 J 30S 150E 180 150W 120W 90W Nino3.4 Monthly Standard Deviation -1.6 -1.4 1.6 1.2 1.0 Temperature (°C) 0.8 0.6 0.4 0.2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec HadISST 1950b96pi2 HadISST 1950+ nino34 Index Power Spectrum 40 b96pi2 $\sigma = 0.717305$

Summary

- ACCESS-CM2 prototype version with mixed-resolution configurations has been under extensive tests
- Multi-century PI tests with ¼-deg ocean-sea ice shows better ENSO and IOD variabilities
- Some issues worse than ACCESS1.x, e.g.,
 - Larger Southern Ocean warm bias and thus little sea ice stays through summer)
 - Larger water imbalance in the ocean (not shown here) (bug identified and partially fixed in UM10.1)
- Current work: UM10.4/GA7 (with multi-layer CICE—GIS8) implementation → Official version of ACCESS-CM2 for CMIP6
- Soon future: CABLE2.x replacing Jules, hopefully.

Australian GovernmentThe Centre for Australian Weather and Climate ResearchBureau of MeteorologyA partnership between CSIRO and the Bureau of Meteorology

Australian Government

Bureau of Meteorology

The Centre for Australian Weather and Climate Research, a partnership between CSIRO and the Bureau of Meteorology

Dr Daohua Bi, Coupled Modeller CSIRO Marine and Atmospheric Research Aspendale, Vic3195 Australia

Phone: (+61-3-) 92394507 Email: Dave.Bi@csiro.au Web: www.cawcr.gov.au

ACCESS-CM2/ESM2 timeline (- subject to reassessment)

Time	Step
Sept 2016	Final code in place (GA7 – UM10.x, CABLE2)
Oct 2016 – Mar 2017	Testing and tuning (N96O1, N96O.25)
April – Sept 2017	Perform final trial simulations
Sept 2017	Select final configuration(s)
Oct 2017 – Mar 2018	CMIP6 DECK and Tier 1 scenarioMIP simulations
2018	Other MIP simulations conducted

- > N216 version continue in background next two years; lag above by \sim 2 years.
- ACCESS-ESM version (N96) with atmospheric chemistry continue testing UKCA next two years; lag above by ~2 years.

Time Line for ACCESS-2 Development:

- June 2014 is stated as the target deliverable date in the ACCSP for completing the technical coupling of a ACCESS-CM2/ESM2 prototype, low-res model. Then,
- Debugging/tuning this low-res ACCESS-2 ("ever-lasting" work), targeting release in 2016 for community applications.
- In parallel, configuring high-res ACCESS-CM2/ESM2 for CMIP6/AR6, ready for multi-year tests by 2015/2016.
- Tuning high-res ACCESS-CM2 for acceptable climatology and freeze the model for CMIP6 experiments by 2017.
- Conducting parallel CMIP6 experiments from 2017 onward.
- Risks to such rapid assembly include:
 - Possible delay to the GFDL release of MOM6;
 - Dependency on adequate computing at NCI;
 - Possible failure in

Australian Government
Bureau of Meteorology

CMIP Timing

CMIP5:

- exploratory Aspen Global Change Institute workshop: August 2006
- Iterations on experimental design in research community: 2006-2008
- WGCM approved experimental design: 2008 (duration of CMIP5 2008-2013)
- Modeling groups receive scenario info from IAM groups: 2010 and start runs
- CMIP5 model analysis workshop: March 2012
- deadline for papers assessed in IPCC AR5: July 2012
- WGI AR5 report published: late 2013
- Ongoing analysis of CMIP5 data: 2013 until CMIP6 data available ~2017

CMIP6:

- exploratory Aspen Global Change Institute workshop: August 2013
- Iterations on experimental design in research community: 2013-2015
- WGCM approve experimental design: 2015 (duration of CMIP6 2015-2020)
- Modeling groups receive scenario info from IAM groups: 2017 and start runs
- CMIP6 model analysis workshop: 2018
- deadline for papers assessed in IPCC AR6: 2019
- WGI AR6 report published: 2020
- Ongoing analysis of CMIP6 data: 2020 onward

From http://www.cesm.ucar.edu/events/second 3/presentations/SDWG/meehl.pdf

Drift of temperature in the ocean interior

Drift of salinity in the ocean interior

ENSO / IOD [Result of the CT run]

Period (year)

Global Meridional Overturning Circulation (Sv) (years 171 - 180)

N96OQngm: AMOC

N96OQct: AMOC

Global Meridional Overturning Circulation (Sv) (years 21 - 30)

