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Motivation:
CAFE60 was developed to

• provide the first ensemble reanalysis of the climate over the past 60 years of sufficient size and tem-
poral resolution that the evolving climate pdf might be accurately estimated

• generate self consistent and balanced initial conditions for O(100) forecasts each month from 1960 to
present

• as part of the WMO Grand Challenge in Near Term Climate Prediction to develop an operational
system capable of generating outputs sufficient to meet the conditions to become a WMO santioned
global data producing centre (GDPC)

• push the boundaries of data assimilation - i.e. strongly coupled data assimilation

Reanalysis:

• 96 members

• Daily data: Atmosphere, surface fluxes, surface ocean, OBGC

• Monthly data: subsurface ocean, sea ice, land

Forecasts:

• 10 members 10 years every November

• ALCG: 96 members each month 2018-present

CAFE60v1 has completed all requirements for the WMO GDPC providing hindcast and forecasts.
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Background studies:

• T.J. O’Kane, P.A. Sandery, D.P. Monselesan, P. Sakov, M.A. Cham-
berlain, R.J. Matear, M.A. Collier, D.T. Squire and L. Stevens (2019)
“Coupled data assimilation and ensemble initialization with appli-
cation to multi-year ENSO prediction”, J. Climate, 32, 997—1024

• T.J. O’Kane, P.A. Sandery, V. Kitsios, R.J. Matear, T. Moore, J.S.
Risbey, I. Watterson (2020) Enhanced ENSO prediction via aug-
mentation of multi-model ensembles with initial thermocline per-
turbations. (J. Climate, 33, pp2281–2293)

• P.A. Sandery, T.J. O’Kane, V. Kitsios and P. Sakov (2020) State
estimation of the climate system with the EnKF using variants of
coupled data assimilation (EOR Mon. Wea. Rev.)
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Model
• The atmospheric radiative forcing data used is based on CM2.1

CMIP5 historical forcings and was provided courtesy of GFDL

• This data was extended using RCP4.5 forcings for all the major
radiative gases i.e. CO2, CH4, N2O etc, and aerosols

• The only fields that change at different dates are volcanic sul-
phate aerosols, stratospheric O3 and ocean CO2 used to estimate
ocean carbon

• For O3 we used the spatially heterogeneous CMIP6 data which
we tested this against the CMIP5 zonal mean O3 over various as-
similation periods finding better results i.e. lower RMS error.

• Volcanic emissions post 2000 were based on a “neutral” year

• Ocean CO2 was based on data used in the ACCESS CMIP6
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Observations

Table 1: Observation type and error estimates

Obs type Dataset spatial distribution error estimate R-Factor
Sea surface temperature SST HadISST, OSISST, AVHRR, AMSR-E, AMSR-2, VIIRS, WindSat point 0.5K, 0.5K, †, 0.5K, †, 0.25K, † 8

Sea level anomaly SLA RADS track † 64
In situ ocean temperature TEM∗ Argo, XBT, CTD, TAO, PIRATA profiles 0.5K 8

In situ ocean salinity SAL∗ Argo, CTD, TAO, PIRATA profiles 0.075psu 8
Sea ice concentration SIC HadISIC, OSISAF gridded 0.1 [C], 0.1 [C] 8
Sea ice temperature SIT HadISIT gridded 0.1K 8

Zonal wind ARU JRA55 gridded 1ms−1 8
Meridional wind ARV JRA55 gridded 1ms−1 8
Air temperature ART JRA55 gridded 1K 8

Specific humidity ARH JRA55 gridded 0.05kg/kg 8

Table 2: *
∗ Low confidence CORA5.0 in situ data TEM2 & SAL2 have twice the error and four times the

R-Factor to the high confidence data listed in the table.† error provided by vendor.
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CORA5.0

Figure 1:
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EnKF scheme

The ETKF propagates first and second moments of x recursively and applies k-ensemble
forecast and analysis anomalies zi for i = 1, 2, . . . , k defined as

Zf =
1√
k − 1

[zf1 , z
f
2 , . . . , z

f
k ], (1a)

Za =
1√
k − 1

[za1, z
a
2, . . . , z

a
k] (1b)

and where the state vectors are zfi = xf
i − 〈xf〉 and zai = xa

i − 〈xa〉 which are
n-dimensional in model space. The ETKF acts to choose appropriate initial forecast
anomalies consistent with error covariance update equations within the vector subspace
of ensemble anomalies formed as Pf = ZfZfT

and Pa = ZaZaT and where the
covariance update is given by

Pa = (I−KH)Pf , (2a)

K = PfHT (HPfHT + D)−1 (2b)

where K is the n × p Kalman gain, P is the positive definite state covariance error
matrix, I is the indentity matrix, and H is the p × n linearised observational operator
mapping forecast grid point values onto observational points.
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ETKF cont...

The Kalman gain K acts on the innovation
[
di −H〈xf〉

]
and specifically i.e.,

xa = xf + K
[
d−Hxf

]
(3)

Za = ZfT (4)

where the transform matrix T is now defined in terms of the k × (k − 1) matrix of
non-zero eigenvalues such that

T = C(Γ + I)1/2CT (5)

where the Γ (non-zero eigenvalues) is (k − 1) × (k − 1) and C is k × (k − 1),
corresponds to the transform matrix in spherical simplex form.

CAFE60 uses monthly mean observations and background (forecast) covariances to
update the state estimates. For the atmosphere tis is radical as we seek to constrain
only the large scale structures i.e.jet, Hadley and Ferrel cells etc.
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Table 3: P.A. Sandery, T.J. O’Kane, V. Kitsios and P. Sakov (2020) State estimation of the climate
system with the EnKF using variants of coupled data assimilation (EOR Mon. Wea. Rev.)

case A-A A-O O-O O-A Atmospheric Increment Ocean Increment Type
1 1 1 1 1 atmospheric and ocean observations atmospheric and ocean observations strong
2 0 0 1 1 atmospheric and ocean observations strong
3 1 1 0 0 atmospheric and ocean observations strong
4 1 0 1 0 atmospheric observations ocean observations weak
5 0 0 1 0 ocean observations weak
6 1 0 0 0 atmospheric observations weak
7 0 1 0 1 ocean observations atmospheric observations strong
8 0 1 1 0 ocean observations ocean observations strong
9 1 0 0 1 atmospheric observations atmospheric observations strong
10 0 0 0 1 atmospheric observations strong
11 1 1 1 0 atmospheric and ocean observations ocean observations strong
12 0 1 1 1 ocean observations atmospheric and ocean observations strong
13 0 1 0 0 ocean observations strong
14 1 1 0 1 atmospheric and ocean observations atmospheric observations strong
15 1 0 1 1 atmospheric observations atmospheric and ocean observations strong
16 0 0 0 0 control

• A-A atmospheric covariances

• O-O ocean covariances

• A-O atmosphere-ocean cross-covariance: atmospheric increment due to ocean observations

• O-A ocean-atmosphere cross-covariance: ocean increment due to atmospheric observations
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Ocean error growth: 7 day cycle

Error growth rates for (a) sea surface temperature,

(b) sea-level anomaly and (c) in-situ temperature.

σG (T ) =
1

T
ln(

σF (T )

σA

)

Global forecast innovation errors..

Small innovation - error growth as skill decreases w.r.t. time 

Large innovation - saturated errors
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Table 4: Ocean domain
1st class 2nd class 3rd class 4th class
008: A-O, O-O 002: O-A, O-O 001: A-A, A-O, O-O, O-A remaining variants saturated
005: O-O 012: A-O, O-O, O-A 011: A-A, A-O, O-O

015: A-A, O-O, O-A

Table 5: Atmosphere domain
1st class 2nd class
001: A-A, A-O, O-O, O-A remaining variants saturated
008: A-O, O-O
011: A-A, A-O, O-O
003: A-A, A-O
009: A-A, O-A

In the atmosphere domain and for a 7-day or longer cycle, an atmospheric increment based on ocean
observations performs almost as well as directly assimilating atmospheric observations.

• A-A atmospheric covariances

• O-O ocean covariances

• A-O atmosphere-ocean cross-covariance: atmospheric increment due to ocean observations

• O-A ocean-atmosphere cross-covariance: ocean increment due to atmospheric observations

In addition CAFE60 has sea ice is strongly coupled to the ocean. OBGC is weakly coupled to the
ocean via the cross domain covariance dependent on ocean observations. No assimilation of land
based observations.
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Atmosphere

Figure 2:
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Figure 3: (a) Annual means of the CAFE60 SAM index calculated as the leading PC of daily 500hPa geopotential height data and the corresponding
EOF1 spatial pattern and its correlation with JRA55. (b) Similar calculations for the annual mean PSA1 mode and (c) the Northern Annular mode / Arctic
Oscillation EOF-based index for lead-zero daily PCs and corresponding EOF patterns. Here, both the ensemble mean of the EOF patterns and the EOF
pattern of the ensemble mean are shown to illustrate model bias in the Pacific Ocean evident in the ensemble mean of member EOFs which are not
evident whenconsidering the EOF of the ensemble mean.
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IPO-TPI

Figure 4: Interdecadal Pacific Oscillation tripole index.
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MJO

Figure 5: (b) The two leading principal components (PCs) of the daily 850 minus 150-hPa global velocity potential and their regression onto OLR and
the ensemble mean wind direction pattern resulting from the regression of PCs onto u and v wind anomalies at 150 hPa. (c) Time series of amplitude and
phase of the MJO in terms of daily 850 minus 150-hPa global velocity potential. Light blue shading indicates the CAFE60 ensemble spread, the darker
blue shading indicates one standard deviation from the mean.



DFP-NESP workshop May 2018 Slide 16 of 22

SAT and Precipitation

Figure 6: Comparison of CAFE60 ensemble mean precipitation and surface air temperature to Had-
CRUT4, ERA5, GPCP and AWAP.
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Ertel PV

Figure 7:
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Global MOC

Figure 8: ACCESS-CM2 and CAFE60 meridional volume transport in depth coordinates defined in terms of the mass transport (kgs−1) as a
function of horizontal location and depth. Here the MOC are defined globally. Red contours indicate 16Sv and 2 Sv respectively. Black contours indicate
stddvn.
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Transports

Figure 9: To obtain strength of overturning for a particular common index to compare to generally very limited observations, we simply identify the
maximum value within a particular depth and latitude box, the range of these boxes are: AMOC26◦N−25.5◦ − 26.5◦, 0−6000mAABW90◦S−
60◦S, 0−3000m Note that AMOC26N is identified at the two longitudes 25.5 and 26.5 that span the reqired 26◦N .
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Sea Ice Extent

Figure 10: Arctic sea ice in JUL-SEP unrealistically low. Variability is good but trends are poor. Sea
Ice is a huge challenge for long cycle length!
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Summary

Challenges:
• Sea Ice
• blocking over Euro-Atlantic sector
• pre-Argo ocean

Future plans (just beginning):
• Australian Leadership Computing Grant forecasts.
• Improve sea ice!!
• Assimilation of land observations (leaf area index, soil moisture

content), OBGC (Chlorophyl A).
• GFDL CM4.

CAFE60 offers a novel way to understand climate variability and pre-
dictability over the last 6 decades.
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