Numerical tracer mixing in
the COSIMA model suite
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Introduction Continuous 10 96 _ ;99

Advection: ot Ox
Numerical mixing — artificial diffusion of tracer gradients arising
from discrete advection Discrete analog (centered-space, forward-
time):
Contributes to model biases — “the models mix too much”. Numerical Diffusion
Interior diapycnal diffusivity is small (<10-°m?s1), spurious
numerical rﬁ?i/xing can ofter):be Iarger(. <P @ — —U@ + U2§ 82_@
ot Ox 2 Ox?
Bf;figg;ocgﬁ?:;fg in realistic models — typically studied in + O((A$)2, (At)2)
This study: - ‘ -
- Numerical mixing estimated across ACCESS-OM2 suite °or
- Sensitivity to resolution and physical parameterizations. 0. ‘
© oaf Advection (U)
We do not: 0.2
- Test sensitivity to advection schemes (take MDPPM as given) L __ _ |
- Precisely decompose isopycnal vs. diapycnal components L
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Method: Heat budget analysis in temperature coordinates
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Heat budget of the seawater warmer than South  © ) North
Theta:
5’7‘[ isotherm
—©,t)= F + M + R
\at V) . . . mmp — Heat Flux (W)
e Forcing Vertical Redi mp — Volume Flux (Sv)
Tendency
+ A -+ g @ £0 Cp
NV N——
Numerical

Diathermal Advection

Diathermal advection removed by combining
with the volume budget — integrated, more
robust.

F, M and R calculated by online binning
Eulerian budget into temperature coordinates.
dH/dt tracked using snapshots.

Numerical mixing (I) calculated by residual
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Global Diathermal Heat Budget in MOMO025 Control

|
I I t
_ ||——Internal HC Tendency N :
L5 H—Surface Forcing F E B
= —Vertical Mixing M |
A~ ——Numerical Mixing 7 i
> 4| ! i
- |
* : Warming fra
;_‘ . . 1
e ———————— .
g ) Cooling from Surface Forcing i Surface Forcite ~— "
g 0.5 - |
< |
s |
= :
'E \ :
<= i
o 0= :
E :
; \ Downgradient heat transfer from Mixing
I
1
o=
+ -0.5+ =
« i
[} 1
a, !
|
-1 | | | ! \ |
10 15 20 i 25 30

7

Climate Change Research Centre

(5]

Temperature © (°C)
Warm-to-cold heat transport

driven as much by
numerical as vertical mixing
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Method: Heat budget analysis in temperature coordinates

P(O.1)  Js(0,1) F(O.t)

Heat budget of the seawater warmer than South  © ) North
Theta:
5’7‘[ isotherm
—(©,t)= F + M + R L
\at V) mmp — Heat Flux (W)
g Forcing Vertical Redi mep = Volume Flux (Sv)
Tendency o
+ T + Q@po Cp
Numerical  pyi,thermal Advection _
| P
Spatial Structure
Diathermal advection removed by combining Can be estimated b 7
with the volume budget — integrated, more generalizing to a sin{gle fluid 1 BV(z,y, 69)
robust. column by including H(z,y,0,1) <
temperature-binned lateral
F, M and R calculated by online binning volume (J) and heat (Q) O
Eulerian budget into temperature coordinates. fluxes
dH/dt tracked using snapshots.
However — more
Numerical mixing (1) calculated by residual approximations needed.
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MOMO25 Control results -> Warm temperatures

Heat flux due to numerical mixing through 22.5°C isotherm:

Note: Background diffusivity = 10-5m?2s-1
(10°m2s-1 near Equator)

110 High grid-scale vertical

) ) temperature gradients
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Sensitivity to vert

Vertical Resolution Comparison

ical resolution in ACCESS-OM2-1
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MOMO25 Control results -> Cold temperatures

Numerical mixing Ratio of numerical and vertical

Dominated by eddy-regions — boundary currents and ACC.

Does this mean that numerical mixing is mostly isopycnal in these regions?
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Sensitivity to neutral physics

T , 1 T r T —  Adding along-isopycnal diffusion (~200m?s-1) reduces
numerical mixing by ~60%. Diathermal budget suggests
clean substitution.

However - there are significant mean state changes
(Southern Ocean, Gulf Stream).

Surface Forcing (PW)

Redi Mixing (PW)
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Note: Changes in vertical mixing negligible
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Sensitivity to horizontal resolution and lateral viscosity

10

—1.2f .
[l -

= (¢] -

K 1 -1/4 — — |
= 17100 = -

— -

T 0.8} - .
< ==

0.6k = ACCESS-OM2-025-RG -
| — — ACCESS-OM?2-025

Zoat ACCESS-OM2-1-KDS50 -
S ACCESS-OM2-01

2 02¢ o= == ACCESS-OM2-01-hvisc 4

[] 1 1 1 1 1

ol [] T T T T T

z
=02k b=~

9!8 — il

5 04r -~

=

= 0.6}

=

S-08F

[;J 1 1 1 1 1 1
E‘; [] L) L) T L) L
=

o0 0.2 F
2 04f — N

Z 0.6} ~ o —_—

2 ~

g 08 S

=3 1 1 1 1 —_ - 1
“ 0 5 10 15 20 30

Temperature @ (°C)

Climate Change Research Centre

Generally, numerical mixing largest at 1/4°,
followed by 1/10° and finally 1°.

Partially because of physical mixing
differences across the resolutions — choices of
mixing coefficients made partially in anticipation
of numerical mixing.

Increasing Smagorinsky biharmonic viscosity
from 2->3 in 1/10° reduces numerical mixing by
10-15%.

Spectral analysis (coming soon) will yield more
insight...
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Summary/conclusions/questions

Key Conclusions:

1) Numerical mixing drives a large fraction of global warm-to-cold heat transport.
2) Sensitivity to resolution and physical mixing schemes suggests:
warm/tropical numerical mixing is largely diapycnal

Cold/boundary current numerical mixing has a large isopycnal component.

Open guestions:

1) Does numerical mixing constitute a valid representation of absent physical mixing?
2) Are the simulations adversely affected (more work needed — spectra, biases)?

Questions and suggestions welcome!
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