
Scalability of ACCESS-OM2 on Gadi - Paul Leopardi 18 March 2020

The aim is to better tune ACCESS-OM2 on Gadi, especially the 0.1 degree experiments

1. Scalability of standalone models, starting with MOM5

The performance of the individual models is best measured by running them as
standalone. This also more easily allows performance tuning tools, such as Scorep,
ARM, Intel to be used, since Payu is not needed.
Rui provided a starting configuration in the directory pom25. This uses MOM_SIS and
is based on global_0.25_degree_NYF.
A version of input.nml that is close to the one in the pom25 directory addresses
the following issues.

a. mpp_io_init: error reading input.nml

Removed the variable parallel_netcdf from namelist mpp_io_nml.
b. ocean_topog_mod: min_thickness must be explicitly

specified in ocean_topog_nml

Set variable min_thickness to 1.0e-3 in namelist ocean_topog_nml.
c. NetCDF: One or more variable sizes violate format

constraints

Took the input.nml file from pom25 directory, made changes a. and b.,
and changed io_layout from 1,1 to 4,5. Used the diag_table file from
pom25.

The MOM_SIS 0.25 degree experiment was scaled to 960, 1920, 3840, 7680 and
15360 cores. Each run is for a simulated 31 day month, and runtime is listed per
1800 second (0.5 hour) time step. CPU time is runtime in hours multiplied by the
number of CPUs. The number of cores is doubled on each row, and land masking is
ignored in calculating the number of cores. Each row summarises 5 runs.

Cores Layout Runtime (s) CPU time (cpu hours)

 960 = 48 x 20: 0.2834 +/- 0.0004 0.076

 1920 = 48 x 40: 0.1315 +/- 0.0003 0.070

 3840 = 96 x 40: 0.0676 +/- 0.0008 0.072

 7680 = 96 x 80: 0.0363 +/- 0.0010 0.078

15360 =192 x 80: 0.0260 +/- 0.0008 0.111

2. Effect of Intel compiler flags on MOM5 performance
Preliminary results of testing with MOM_SIS with 15360 cores indicates that the use
of AVX2 vs AVX512 instructions has no significant effect on performance, and neither
does the use of reproducibility flags. In the table below, each row summarises 5 runs
(4 for the last row) and the figure after +/- is 2 x standard deviation.

Flags Runtime (s) CPU time (cpu hours)

AVX2: 0.0263 +/- 0.0016 0.112

AVX512: 0.0261 +/- 0.0012 0.111

AVX512-REPRO: 0.0264 +/- 0.0018 0.113

Flags:

AVX2: -axCORE-AVX2

AVX512: -axCORE-AVX512

AVX512-REPRO: -axCORE-AVX512 \

 -fp-model precise -fp-model source -align all

To get a better idea of the effect of compiler flags on performance, I intend to run the
comparison again with 960 cores instead of 15360 cores.

3. MOM_SIS intermittent slowdown
During testing, one run was encountered where the ocean model runtime took 48.4
seconds, as opposed to the 37.8 to 41.3 seconds for the 14 other runs -- Gadi job
2219844 run on 12 March 15:15 to 15:48. This run was treated as an outlier.
The cause of the approx 20% slowdown is unknown, although the qstat output for the
job indicates that it was one of the few jobs (or possibly the only job) that was run on
Gadi nodes with node numbers above 2900.

4. MOM_SIS crashing in OpenMPI 4.0.2
Two of the MOM_SIS benchmarking runs crashed in OpenMPI 4.0.2:
Case 1: job 2213158
[gadi-cpu-clx-1129:6414 :0:6414] Caught signal 11 (Segmentation

fault: invalid permissions for mapped object at address

0x154711b7f17c)

==== backtrace (tid: 6414) ====

 0 0x0000000000012d80 .annobin_sigaction.c() sigaction.c:0

 1 0x000000000003417c opal_progress()

/home/900/z30_apps/builds/_UYaaG8i/0/nci/gadi-apps/openmpi/4.0.2/sour

ce/openmpi-4.0.2/gcc-opt/opal/../../opal/runtime/opal_progress.c:231

 2 0x000000000004ddd5 ompi_request_wait_completion()

/home/900/z30_apps/builds/_UYaaG8i/0/nci/gadi-apps/openmpi/4.0.2/sour

ce/openmpi-4.0.2/gcc-opt/ompi/../../ompi/request/request.h:415

 3 0x000000000004ddd5 ompi_request_default_wait()

/home/900/z30_apps/builds/_UYaaG8i/0/nci/gadi-apps/openmpi/4.0.2/sour

ce/openmpi-4.0.2/gcc-opt/ompi/../../ompi/request/req_wait.c:42

…
Case 2: job 2234702
[gadi-cpu-clx-1129:57776:0:57776] Caught signal 11 (Segmentation

fault: invalid permissions for mapped object at address

0x14c0f1b0edd5)

==== backtrace (tid: 57776) ====

 0 0x0000000000012d80 .annobin_sigaction.c() sigaction.c:0

 1 0x000000000004ddd5 ompi_request_wait_completion()

/home/900/z30_apps/builds/_UYaaG8i/0/nci/gadi-apps/openmpi/4.0.2/sour

ce/openmpi-4.0.2/gcc-opt/ompi/../../ompi/request/request.h:415

 2 0x000000000004ddd5 ompi_request_default_wait()

/home/900/z30_apps/builds/_UYaaG8i/0/nci/gadi-apps/openmpi/4.0.2/sour

ce/openmpi-4.0.2/gcc-opt/ompi/../../ompi/request/req_wait.c:42

…
This could be caused by a bug in UCX, rather than MOM5. Perhaps valgrind
could be used to investigate further. This would need a Valgrind wrapper for
OpenMPI 4.0.2.
https://valgrind.org/docs/manual/mc-manual.html#mc-manual.mpiwrap

5. Comparison of MOM5 performance on Gadi to Raijin and scalability of 0.1
degree experiments

To compare with Raijin performance it is best to go back to using ACCESS-OM2.
This benchmarking includes load balancing between the MOM5 ocean model and the
CICE5 sea ice model.
To perform this benchmarking, it would be best to start with the exact same 1 degree,
0.25 degree and 0.1 degree configurations and data as were used in the report
https://github.com/COSIMA/ACCESS-OM2-1-025-010deg-report
To this end, I will need some help in understanding the contents of
https://github.com/COSIMA/ACCESS-OM2-1-025-010deg-report/tree/master/namelis
ts as well as the locations on Gadi of copies of the original files that were used on
Raijin.
Issue: The original scalability work was done on Raijin, and some of the original
configuration files (owned by Marshall Ward) may have been lost in the transition to
Gadi. https://arccss.slack.com/archives/C9Q7Y1400/p1581897666071800
Issue: Not all of the scalability work was fully documented, and the documentation is
scattered between the report, various Github repositories, and the upstream
documentation.

https://valgrind.org/docs/manual/mc-manual.html#mc-manual.mpiwrap
https://github.com/COSIMA/ACCESS-OM2-1-025-010deg-report
https://github.com/COSIMA/ACCESS-OM2-1-025-010deg-report/tree/master/namelists
https://github.com/COSIMA/ACCESS-OM2-1-025-010deg-report/tree/master/namelists

